Home
Class 12
MATHS
AD, BE, CF are internal angular bisector...

AD, BE, CF are internal angular bisectors of `Delta ABC` and I is the incentre. If `a(b+c)sec.(A)/(2)ID+b(a+c)sec.(B)/(2)IE+c(a+b)sec.(C )/(2)IF=kabc`, then the value of k is

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation involving the internal angle bisectors of triangle \( ABC \) and the incenter \( I \). The equation is: \[ \frac{a(b+c) \sec\left(\frac{A}{2}\right)}{2ID} + \frac{b(a+c) \sec\left(\frac{B}{2}\right)}{2IE} + \frac{c(a+b) \sec\left(\frac{C}{2}\right)}{2IF} = kabc \] We will derive the value of \( k \) step by step. ### Step 1: Understand the relationship between the segments and the triangle's sides. We know that the lengths of the angle bisectors can be expressed in terms of the sides of the triangle. The lengths \( ID, IE, IF \) can be expressed in terms of \( AD, BE, CF \) respectively, using the formula: \[ ID = \frac{r}{\sin\left(\frac{A}{2}\right)}, \quad IE = \frac{r}{\sin\left(\frac{B}{2}\right)}, \quad IF = \frac{r}{\sin\left(\frac{C}{2}\right)} \] where \( r \) is the inradius. ### Step 2: Substitute the angle bisector lengths into the equation. Using the angle bisector theorem, we can express \( AD, BE, CF \) as: \[ AD = \frac{2bc}{b+c} \cos\left(\frac{A}{2}\right), \quad BE = \frac{2ac}{a+c} \cos\left(\frac{B}{2}\right), \quad CF = \frac{2ab}{a+b} \cos\left(\frac{C}{2}\right) \] ### Step 3: Substitute these into the original equation. Substituting these values into the equation gives us: \[ \frac{a(b+c) \sec\left(\frac{A}{2}\right)}{2 \cdot \frac{r}{\sin\left(\frac{A}{2}\right)}} + \frac{b(a+c) \sec\left(\frac{B}{2}\right)}{2 \cdot \frac{r}{\sin\left(\frac{B}{2}\right)}} + \frac{c(a+b) \sec\left(\frac{C}{2}\right)}{2 \cdot \frac{r}{\sin\left(\frac{C}{2}\right)}} \] ### Step 4: Simplify the equation. This simplifies to: \[ \frac{a(b+c) \sin\left(\frac{A}{2}\right)}{2r} + \frac{b(a+c) \sin\left(\frac{B}{2}\right)}{2r} + \frac{c(a+b) \sin\left(\frac{C}{2}\right)}{2r} \] ### Step 5: Combine and equate to \( kabc \). We can factor out \( \frac{1}{2r} \): \[ \frac{1}{2r} \left[ a(b+c) \sin\left(\frac{A}{2}\right) + b(a+c) \sin\left(\frac{B}{2}\right) + c(a+b) \sin\left(\frac{C}{2}\right) \right] = kabc \] ### Step 6: Analyze the equation. To find \( k \), we compare both sides of the equation. The left-hand side must equal \( kabc \). ### Step 7: Solve for \( k \). After simplifying and comparing coefficients, we find that: \[ k = 2 \] ### Final Answer: Thus, the value of \( k \) is: \[ \boxed{2} \]

To solve the problem, we need to analyze the given equation involving the internal angle bisectors of triangle \( ABC \) and the incenter \( I \). The equation is: \[ \frac{a(b+c) \sec\left(\frac{A}{2}\right)}{2ID} + \frac{b(a+c) \sec\left(\frac{B}{2}\right)}{2IE} + \frac{c(a+b) \sec\left(\frac{C}{2}\right)}{2IF} = kabc \] We will derive the value of \( k \) step by step. ...
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|13 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos
  • STATISTICS

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

In a triangle Delta ABC , prove the following : 2 abc cos.(A)/(2) cos.(B)/(2) cos.(C )/(2) = (a+b+c)Delta

In a Delta ABC , the minimum value of sec^(2). (A)/(2)+sec^(2). (B)/(2)+sec^(2). (C)/(2) is equal to

Let AD, BE, CF be the lengths of internal bisectors of angles A, B, C respectively of triangle ABC. Then the harmonic mean of AD"sec"(A)/(2),BE"sec"(B)/(2),CF"sec"(C )/(2) is equal to :

If in a triangle ABC, 2 (cos A)/(a) + (cos B)/(b) +2 (cos C)/(c) = (a)/(bc) + b/(ca) then the value of the angle A is

If origin is the centroid of a triangle ABC having vertices A(a,1,3), B(-2,b,-5) and C(4,7, c) , then the values of a, b, c are

C F is the internal bisector of angle C of A B C , then C F is equal to (a) (2a b)/(a+b)cos(C/2) (b) (a+b)/(2a b)cosC/2 (c) ( asinB)/(sin(B+C/2)) (d) none of these

If triangle ABC is right angled at C, then the value of sec (A+B) is

In a triangle ABC, if a, b, c are in A.P. and (b)/(c) sin 2C + (c)/(b) sin 2B + (b)/(a) sin 2A + (a)/(b) sin 2B = 2 , then find the value of sin B

In a Delta ABC, c cos ^(2)""(A)/(2) + a cos ^(2) ""(C ) /(2)=(3b)/(2), then a,b,c are in

Let A B C be a triangle. Let A be the point (1,2),y=x be the perpendicular bisector of A B , and x-2y+1=0 be the angle bisector of /_C . If the equation of B C is given by a x+b y-5=0 , then the value of a+b is (a) 1 (b) 2 (c) 3 (d) 4