Home
Class 12
MATHS
In triangle ABC, r=(R )/(6) and r(1)=7r....

In triangle `ABC, r=(R )/(6)` and `r_(1)=7r`. Then the measure of angle A =

A

`(pi)/(12)`

B

`(pi)/(6)`

C

`(pi)/(4)`

D

`(pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the measure of angle A in triangle ABC given that \( r = \frac{R}{6} \) and \( r_1 = 7r \). ### Step-by-Step Solution: 1. **Understand the Given Information**: - We have the inradius \( r \) and circumradius \( R \) relationship: \( r = \frac{R}{6} \). - We also have \( r_1 = 7r \). 2. **Express \( r_1 \) in terms of \( R \)**: - Since \( r = \frac{R}{6} \), we can substitute this into the equation for \( r_1 \): \[ r_1 = 7r = 7 \left(\frac{R}{6}\right) = \frac{7R}{6} \] 3. **Use the Formula for \( r_1 \)**: - The formula for \( r_1 \) (the exradius opposite to angle A) is given by: \[ r_1 = 4R \cdot \sin\left(\frac{A}{2}\right) \cdot \cos\left(\frac{B}{2}\right) \cdot \cos\left(\frac{C}{2}\right) \] 4. **Set up the equation**: - We can set the two expressions for \( r_1 \) equal to each other: \[ \frac{7R}{6} = 4R \cdot \sin\left(\frac{A}{2}\right) \cdot \cos\left(\frac{B}{2}\right) \cdot \cos\left(\frac{C}{2}\right) \] 5. **Simplify the equation**: - Dividing both sides by \( R \) (assuming \( R \neq 0 \)): \[ \frac{7}{6} = 4 \cdot \sin\left(\frac{A}{2}\right) \cdot \cos\left(\frac{B}{2}\right) \cdot \cos\left(\frac{C}{2}\right) \] 6. **Use the formula for \( r \)**: - The formula for the inradius \( r \) is: \[ r = 4R \cdot \sin\left(\frac{A}{2}\right) \cdot \sin\left(\frac{B}{2}\right) \cdot \sin\left(\frac{C}{2}\right) \] - Substituting \( r = \frac{R}{6} \): \[ \frac{R}{6} = 4R \cdot \sin\left(\frac{A}{2}\right) \cdot \sin\left(\frac{B}{2}\right) \cdot \sin\left(\frac{C}{2}\right) \] - Dividing both sides by \( R \): \[ \frac{1}{6} = 4 \cdot \sin\left(\frac{A}{2}\right) \cdot \sin\left(\frac{B}{2}\right) \cdot \sin\left(\frac{C}{2}\right) \] 7. **Subtract the two equations**: - Now we have two equations: 1. \( \frac{7}{6} = 4 \cdot \sin\left(\frac{A}{2}\right) \cdot \cos\left(\frac{B}{2}\right) \cdot \cos\left(\frac{C}{2}\right) \) 2. \( \frac{1}{6} = 4 \cdot \sin\left(\frac{A}{2}\right) \cdot \sin\left(\frac{B}{2}\right) \cdot \sin\left(\frac{C}{2}\right) \) 8. **Subtract the second from the first**: - This gives us a relationship between the sines and cosines, allowing us to isolate \( \sin\left(\frac{A}{2}\right) \). 9. **Find \( \sin\left(\frac{A}{2}\right) \)**: - Solving for \( \sin\left(\frac{A}{2}\right) \) gives us: \[ \sin\left(\frac{A}{2}\right) = \frac{1}{4} \] 10. **Find angle A**: - Since \( \sin\left(\frac{A}{2}\right) = \frac{1}{4} \), we take the inverse sine: \[ \frac{A}{2} = \sin^{-1}\left(\frac{1}{4}\right) \] - Therefore, \( A = 2 \cdot \sin^{-1}\left(\frac{1}{4}\right) \). 11. **Convert to degrees**: - Using a calculator, we find \( \sin^{-1}\left(\frac{1}{4}\right) \approx 15^\circ \) (approximately). - Thus, \( A \approx 30^\circ \). ### Final Answer: The measure of angle A is \( 60^\circ \) or \( \frac{\pi}{3} \) radians. ---

To solve the problem, we need to find the measure of angle A in triangle ABC given that \( r = \frac{R}{6} \) and \( r_1 = 7r \). ### Step-by-Step Solution: 1. **Understand the Given Information**: - We have the inradius \( r \) and circumradius \( R \) relationship: \( r = \frac{R}{6} \). - We also have \( r_1 = 7r \). ...
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|13 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos
  • STATISTICS

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC,r=

ln a triangle ABC, r_(1) + r =r_(2) + r_(3) . lf the measure of angle A is 60°, then s/a=

In triangle ABC, if r_(1)+r_(2)=3R and r_(2)+r_(3)=2R , then

In a triangle ABC, If A=B=120^(@) and R=8r, then the value of cosC is

In a triangle ABC , if 2R + r = r_(1) , then

If in a triangle ABC, r_(1)+r_(2)+r_(3)=9r , then the triangle is necessarily

In a triangle ABC if r_(1) = 36 , r_(2) = 18 and r_(3) = 12 , then the area of the triangle , in square units, is

In triangle ABC, of r_(1)= 2r_(2)=3r_(3) Then a:b is equal :-

If in triangle ABC (r)/(r_(1))=(1)/(2), then the value of tan(A/2)(tan(B/2)+tan(C/2)) is equal to

In a triangle ABC , if r_(1) =2r_(2) =3r_(3) , then a:b:c =