Home
Class 12
MATHS
In the ambiguous case if the remaining a...

In the ambiguous case if the remaining angles of a triangle with given a, b, A and `B_(1),B_(2),C_(1),C_(2)` then `(sin C_(1))/(sin B_(1))+(sin C_(2))/(sin B_(2))=`

A

2 cos A

B

2 sin B

C

2 tan A

D

2 cot A

Text Solution

Verified by Experts

The correct Answer is:
A

`a^(2)=b^(2)+c^(2)-2bc` coa A
or `c^(2)-(2b cos A)c+b^(2)-a^(2)=0`
Above equation has two roots `c_(1)` and `c_(2)`
`therefore c_(1)+c_(2)=2bcos A` and `c_(1)c_(2)=b^(2)-a^(2)`
`sin B_(1)=sin B_(2)=(b sin A)/(a)`
`sin C_(1)=(c_(1)sin A)/(a)`
`sin C_(2)=(c_(2)sin A)/(a)`
`therefore (sin C_(1))/(sin B_(1))+(sin C_(2))/(sin B_(2))=(c_(1)+c_(2))/(b)=2 cos A`
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|13 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos
  • STATISTICS

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

In the ambiguous case, it two triangles are formed with a, b, A, then that the sum of areas of these triangles is 1/2 b^(2) sin 2A .

If A, B, C are the angles of a triangle such that sin^(2)A+sin^(2)B=sin^(2)C , then

In a right angled triangle ABC, write the value of sin^2 A + sin^2 B+ sin^2C

In any triangle A B C , prove that: (a^2sin(B-C))/(sinB+ sin C)+(b^2sin(C-A))/(sinC+ sin A)+(c^2sin(A-B))/(sinA+ sin B)=0

In any triangle A B C , prove that following: \ (a^2"sin"(B-C))/(sin A)+(b^2"sin"(C-A))/(sin B)+(c^2"sin"(A-B))/(sin C)=0

If A ,\ B ,\ C are the interior angles of a triangle A B C , prove that tan((C+A)/2)=cotB/2 (ii) sin((B+C)/2)=cosA/2

If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0 , then the triangle ABC is

If A, B, C are the angles of a triangle, then the determinant Delta = |(sin 2 A,sin C,sin B),(sin C,sin 2B,sin A),(sin B,sin A,sin 2 C)| is equal to

In Delta ABC, a, b and A are given and c_(1), c_(2) are two values of the third side c. Prove that the sum of the area of two triangles with sides a, b, c_(1) and a, b c_(2) " is " (1)/(2) b^(2) sin 2A

Prove that (sin (A - B))/( sin A sin B ) + ( sin (B -C))/( sin B sin C ) + (sin (C - A))/( sin C sin A) =0