Home
Class 12
MATHS
If veca, vecb and vecc are non-coplanar ...

If `veca, vecb and vecc` are non-coplanar vectors, prove that the four points `2veca+3vecb-vecc, veca-2vecb+3vecc, 3veca+4vecb-2vecc and veca-6vecb+ 6 vecc` are coplanar.

Text Solution

AI Generated Solution

To prove that the four points \( P_1 = 2\vec{a} + 3\vec{b} - \vec{c} \), \( P_2 = \vec{a} - 2\vec{b} + 3\vec{c} \), \( P_3 = 3\vec{a} + 4\vec{b} - 2\vec{c} \), and \( P_4 = \vec{a} - 6\vec{b} + 6\vec{c} \) are coplanar, we will show that the vectors \( \vec{AB} \), \( \vec{AC} \), and \( \vec{AD} \) are coplanar. ### Step 1: Define the vectors Let: - \( \vec{O} \) be the origin. - \( \vec{P_1} = 2\vec{a} + 3\vec{b} - \vec{c} \) - \( \vec{P_2} = \vec{a} - 2\vec{b} + 3\vec{c} \) - \( \vec{P_3} = 3\vec{a} + 4\vec{b} - 2\vec{c} \) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ILLUSTRATION 45|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ILLUSTRATION 46|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ILLUSTRATION 43|1 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

i. If veca, vecb and vecc are non-coplanar vectors, prove that vectors 3veca-7vecb-4vecc, 3veca-2vecb+vecc and veca+vecb+2vecc are coplanar.

If veca,vecb,vecc are non coplanar vectors, prove that the following points are coplanar: 6veca-4vecb+10vecc, -5veca+3vecb-10vecc, 4veca-6vecb-10vecc,2vecb+10vecc

If veca,vecb,vecc are non coplanar vectors, check whether the following points are coplanar: 6veca+2vecb-vecc, 2veca+vecb+3vecc, -veca+2vecb-4vecc, -12veca-vecb-3vecc

If veca, vecb, vecc are non-coplanar vectors, prove that the following vectors are coplanar. (i) 3veca - 7vecb - 4vecc, 3veca - 2vecb + vecc, veca + vecb + 2vecc (ii) 5veca +6vecb + 7vecc, 7veca - 8vecb + 9vecc, 3veca + 20 vecb + 5vecc

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23veca)]

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca,vecb,vecc are non zero and non coplanar vectors show that the following vector are coplanar: 2veca-3vecb+4vecc, -veca+3vecb-5vecc,-veca+2vecb-3vecc

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If vec a , vec ba n d vec c are three non-zero non-coplanar vectors, then the value of (veca.veca)vecb×vecc+(veca.vecb)vecc×veca+(veca.vecc)veca×vecb.