Home
Class 12
MATHS
Points A( vec a),B( vec b),C( vec c)a n ...

Points `A( vec a),B( vec b),C( vec c)a n dD( vec d)` are relates as `x vec a+y vec b+z vec c+w vec d=0` and `x+y+z+w=0,w h e r ex ,y ,z ,a n dw` are scalars (sum of any two of `x ,y ,zn a dw` is not zero). Prove that if `A ,B ,Ca n dD` are concylic, then `|x y|| vec a- vec b|^2=|w z|| vec c- vec d|^2dot`

Text Solution

Verified by Experts

From the given conditions, it is clear that points `A(veca), B(vecb), C(vecc) and D(vecd)` are coplanar.
Now, `A, B, C and D` are concyclic. Therefore,
`" "APxxBP = CPxxDP`
`" "|(y)/(x+y)||veca-vecb||(x)/(x+y)||veca-vecb|=|(w)/(w+z)||vecc-vecd||(z)/(w+z)||vecc-vecd|`
`" "|xy||veca-vecb|^(2)= |wz| |vecc-vecd|^(2)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.1|20 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.2|7 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ILLUSTRATION 45|1 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

veca , vec b , vec c are non-coplanar vectors and x vec a + y vec b + z vec c = vec 0 then

Prove that [ vec a , vec b , vec c+ vec d]=[ vec a , vec b , vec c]+[ vec a , vec b , vec d]

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then

For any vector vec a\ a n d\ vec b prove that | vec a+ vec b|lt=| vec a|+| vec b|dot

If vec axx vec b= vec bxx vec c!=0,\ then show that vec a+ vec c=m vec b ,\ w h e r e\ m is any scalar.

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec axx vec b= vec axx vec c , vec a!= vec0a n d vec b!= vec c , show that vec b= vec c+t vec a for some scalar tdot

If vec axx vec b= vec cxx vec da n d vec axx vec c= vec bxx vec d , then show that vec a- vec d , is paralelto vec b- vec c

Find | vec a|a n d\ | vec b| , if : ( vec a+ vec b)dot'( vec a- vec b)=12\ a n d\ | vec a|=2| vec b|

Find | vec a|a n d\ | vec b| , if : ( vec a+ vec b)dot'( vec a- vec b)=13\ a n d\ | vec a|=2| vec b|