Home
Class 12
MATHS
Let ABC be a triangle the position vecto...

Let ABC be a triangle the position vectors of whose vertices are respectively `hati+2hatj+4hatk, -2hati+2hatj+hatk and 2hati+4hatj-3hatk`. Then the `/_\ABC` is (A) isosceles (B) equilateral (C) righat angled (D) none of these

A

isosceles

B

equilateral

C

right angled

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the type of triangle ABC based on the given position vectors of its vertices, we will follow these steps: ### Step 1: Identify the position vectors The position vectors of the vertices A, B, and C are given as: - A: \( \vec{A} = \hat{i} + 2\hat{j} + 4\hat{k} \) - B: \( \vec{B} = -2\hat{i} + 2\hat{j} + \hat{k} \) - C: \( \vec{C} = 2\hat{i} + 4\hat{j} - 3\hat{k} \) ### Step 2: Calculate the vectors representing the sides of the triangle We will calculate the vectors for sides AB, BC, and AC. - **Vector AB**: \[ \vec{AB} = \vec{B} - \vec{A} = (-2\hat{i} + 2\hat{j} + \hat{k}) - (\hat{i} + 2\hat{j} + 4\hat{k}) \] \[ = (-2 - 1)\hat{i} + (2 - 2)\hat{j} + (1 - 4)\hat{k} = -3\hat{i} + 0\hat{j} - 3\hat{k} = -3\hat{i} - 3\hat{k} \] - **Vector BC**: \[ \vec{BC} = \vec{C} - \vec{B} = (2\hat{i} + 4\hat{j} - 3\hat{k}) - (-2\hat{i} + 2\hat{j} + \hat{k}) \] \[ = (2 + 2)\hat{i} + (4 - 2)\hat{j} + (-3 - 1)\hat{k} = 4\hat{i} + 2\hat{j} - 4\hat{k} \] - **Vector AC**: \[ \vec{AC} = \vec{C} - \vec{A} = (2\hat{i} + 4\hat{j} - 3\hat{k}) - (\hat{i} + 2\hat{j} + 4\hat{k}) \] \[ = (2 - 1)\hat{i} + (4 - 2)\hat{j} + (-3 - 4)\hat{k} = 1\hat{i} + 2\hat{j} - 7\hat{k} \] ### Step 3: Calculate the magnitudes of the sides Now we will calculate the magnitudes of the vectors \( \vec{AB} \), \( \vec{BC} \), and \( \vec{AC} \). - **Magnitude of AB**: \[ |\vec{AB}| = \sqrt{(-3)^2 + 0^2 + (-3)^2} = \sqrt{9 + 0 + 9} = \sqrt{18} = 3\sqrt{2} \] - **Magnitude of BC**: \[ |\vec{BC}| = \sqrt{(4)^2 + (2)^2 + (-4)^2} = \sqrt{16 + 4 + 16} = \sqrt{36} = 6 \] - **Magnitude of AC**: \[ |\vec{AC}| = \sqrt{(1)^2 + (2)^2 + (-7)^2} = \sqrt{1 + 4 + 49} = \sqrt{54} = 3\sqrt{6} \] ### Step 4: Check for the type of triangle To determine if triangle ABC is a right triangle, we can use the Pythagorean theorem. We need to check if the square of the longest side is equal to the sum of the squares of the other two sides. 1. Calculate \( |\vec{AB}|^2 \), \( |\vec{BC}|^2 \), and \( |\vec{AC}|^2 \): - \( |\vec{AB}|^2 = (3\sqrt{2})^2 = 18 \) - \( |\vec{BC}|^2 = 6^2 = 36 \) - \( |\vec{AC}|^2 = (3\sqrt{6})^2 = 54 \) 2. Check if \( |\vec{AC}|^2 = |\vec{AB}|^2 + |\vec{BC}|^2 \): \[ 54 = 18 + 36 \] This holds true. ### Conclusion Since the Pythagorean theorem holds, triangle ABC is a right-angled triangle. **Final Answer**: (C) right-angled triangle ---

To determine the type of triangle ABC based on the given position vectors of its vertices, we will follow these steps: ### Step 1: Identify the position vectors The position vectors of the vertices A, B, and C are given as: - A: \( \vec{A} = \hat{i} + 2\hat{j} + 4\hat{k} \) - B: \( \vec{B} = -2\hat{i} + 2\hat{j} + \hat{k} \) - C: \( \vec{C} = 2\hat{i} + 4\hat{j} - 3\hat{k} \) ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise REASONING TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SUBJECTIVE|14 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

Let ABC be a triangle, the position vectors of whose vertices are respectively 7 hatj + 10 hatk , -hati + 6 hat j + 6 hatk and -4 hati + 9 hatj + 6 hat k . " Then, " Delta ABC is

Find the vector area of the triangle, the position vectors of whose vertices are hati+hatj+2hatk, 2hati+2hatj-3hatk and 3hati-hatj-hatk

If the position vectors of the vertices of a triangle be 2hati+4hatj-hatk,4hati+5hatj+hatk and 3 hati+6hatj-3hatk , then the triangle is

If the position vectors of A and B respectively hati+3hatj-7hatk and 5 hati-2hatj+4hatk , then find AB

The position vectors of the points A, B, C are 2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk respectively . These points

The position vectors of the points A, B, C are 2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk respectively . These points

The position vectors of the points A, B, C are 2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk respectively . These points

If the position vectors of the vertices of a triangle of a triangle are 2 hati - hatj + hatk , hati - 3 hatj - 5 hatk and 3 hati -4 hatj - 4 hatk , then the triangle is

If a=3hati-2hatj+hatk,b=2hati-4hatj-3hatk and c=-hati+2hatj+2hatk , then a+b+c is

Find the volume of the parallelopiped whose edges are represented by a=2hati-3hatj+4hatk,b=hati+2hatj-hatk and c=3hati-hatj+2hatk .

CENGAGE ENGLISH-INTRODUCTION TO VECTORS -SINGLE CORRECT ANSWER TYPE
  1. Four non zero vectors will always be a. linearly dependent b. linea...

    Text Solution

    |

  2. Let veca,vecb,vecc be three unit vectors such that 3veca+4vecb+5vecc=v...

    Text Solution

    |

  3. Let ABC be a triangle the position vectors of whose vertices are respe...

    Text Solution

    |

  4. If |veca+ vecb| lt | veca- vecb|, then the angle between veca and vecb...

    Text Solution

    |

  5. A point O is the centre of a circle circumscribed about a triangleA...

    Text Solution

    |

  6. If G is the centroid of a triangle A B C , prove that vec G A+ vec G ...

    Text Solution

    |

  7. If vec a\ is a non zero vecrtor iof modulus vec a\ a n d\ m is a no...

    Text Solution

    |

  8. A B C D parallelogram, and A1a n dB1 are the midpoints of sides B Ca n...

    Text Solution

    |

  9. The position vectors of the points P and Q with respect to the origin ...

    Text Solution

    |

  10. A B C D is a quadrilateral. E is the point of intersection of th...

    Text Solution

    |

  11. The vector vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are sides...

    Text Solution

    |

  12. A, B, C and D have position vectors veca, vecb, vecc and vecd, repecti...

    Text Solution

    |

  13. If vec a and vec b are two unit vectors and theta is the angle between...

    Text Solution

    |

  14. let us define , the length of a vector as |a| + |b| +|c| . this defini...

    Text Solution

    |

  15. Given three vectors veca=6hati-3hatj,vecb=2hati-6hatj and vecc=-2hati+...

    Text Solution

    |

  16. If vecalpha+ vecbeta+ vecgamma=a vecdeltaa n d vecbeta+ vecgamma+ vec...

    Text Solution

    |

  17. In triangle A B C ,/A=30^0,H is the orthocenter and D is the midpoint ...

    Text Solution

    |

  18. Let vec r1, vec r2, vec r3, , vec rn be the position vectors of poin...

    Text Solution

    |

  19. Given three non-zero, non-coplanar vectors veca, vecb and vecc. vecr1=...

    Text Solution

    |

  20. If the vectors vec a and vec bare linearly independent and satisfying ...

    Text Solution

    |