Home
Class 12
MATHS
If |veca+ vecb| lt | veca- vecb|, then t...

If `|veca+ vecb| lt | veca- vecb|`, then the angle between `veca and vecb` can lie in the interval

A

`(-pi//2, pi//2)`

B

`(0, pi)`

C

`(pi//2, 3pi//2)`

D

`(0, 2pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given condition: \[ |\vec{a} + \vec{b}| < |\vec{a} - \vec{b}| \] ### Step 1: Square both sides We start by squaring both sides of the inequality: \[ |\vec{a} + \vec{b}|^2 < |\vec{a} - \vec{b}|^2 \] ### Step 2: Expand both sides Using the formula for the magnitude of vectors, we can expand both sides: \[ |\vec{a} + \vec{b}|^2 = \vec{a} \cdot \vec{a} + 2 \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} = |\vec{a}|^2 + 2 \vec{a} \cdot \vec{b} + |\vec{b}|^2 \] \[ |\vec{a} - \vec{b}|^2 = \vec{a} \cdot \vec{a} - 2 \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} = |\vec{a}|^2 - 2 \vec{a} \cdot \vec{b} + |\vec{b}|^2 \] ### Step 3: Set up the inequality Now we substitute these expansions back into the inequality: \[ |\vec{a}|^2 + 2 \vec{a} \cdot \vec{b} + |\vec{b}|^2 < |\vec{a}|^2 - 2 \vec{a} \cdot \vec{b} + |\vec{b}|^2 \] ### Step 4: Simplify the inequality Cancel out the common terms \(|\vec{a}|^2\) and \(|\vec{b}|^2\): \[ 2 \vec{a} \cdot \vec{b} < -2 \vec{a} \cdot \vec{b} \] ### Step 5: Combine like terms Now, we can combine the terms: \[ 4 \vec{a} \cdot \vec{b} < 0 \] ### Step 6: Interpret the dot product Since the dot product \(\vec{a} \cdot \vec{b}\) can be expressed in terms of the angle \(\theta\) between the vectors: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] Thus, we have: \[ 4 |\vec{a}| |\vec{b}| \cos \theta < 0 \] ### Step 7: Determine the angle Since \(|\vec{a}|\) and \(|\vec{b}|\) are both positive, we can conclude that: \[ \cos \theta < 0 \] This implies that the angle \(\theta\) must lie in the intervals where the cosine function is negative: \[ \theta \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \] ### Final Answer Thus, the angle between \(\vec{a}\) and \(\vec{b}\) can lie in the interval: \[ \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \]

To solve the problem, we need to analyze the given condition: \[ |\vec{a} + \vec{b}| < |\vec{a} - \vec{b}| \] ### Step 1: Square both sides We start by squaring both sides of the inequality: ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise REASONING TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SUBJECTIVE|14 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

If veca * vecb = |veca xx vecb| , then this angle between veca and vecb is,

If |veca - vecb|=|veca| =|vecb|=1 , then the angle between veca and vecb , is

If | veca + vecb|=| veca - vecb| , then what is the angle between veca and vecb ?

If veca . vecb =ab then the angle between veca and vecb is

If |veca+vecb|=|veca-vecb| , then what is the angle between veca " and "vecb ?

If |veca xx vecb| = ab then the angle between veca and vecb is

If |vecA + vecB| = |vecA - vecB| , then the angle between vecA and vecB will be

If |vecA + vecB| = |vecA - vecB| , then the angle between vecA and vecB will be

If |vecA xx vecB| = vecA.vecB then the angle between vecA and vecB is :

If |vecA xx vecB| = |vecA*vecB| , then the angle between vecA and vecB will be :

CENGAGE ENGLISH-INTRODUCTION TO VECTORS -SINGLE CORRECT ANSWER TYPE
  1. Let veca,vecb,vecc be three unit vectors such that 3veca+4vecb+5vecc=v...

    Text Solution

    |

  2. Let ABC be a triangle the position vectors of whose vertices are respe...

    Text Solution

    |

  3. If |veca+ vecb| lt | veca- vecb|, then the angle between veca and vecb...

    Text Solution

    |

  4. A point O is the centre of a circle circumscribed about a triangleA...

    Text Solution

    |

  5. If G is the centroid of a triangle A B C , prove that vec G A+ vec G ...

    Text Solution

    |

  6. If vec a\ is a non zero vecrtor iof modulus vec a\ a n d\ m is a no...

    Text Solution

    |

  7. A B C D parallelogram, and A1a n dB1 are the midpoints of sides B Ca n...

    Text Solution

    |

  8. The position vectors of the points P and Q with respect to the origin ...

    Text Solution

    |

  9. A B C D is a quadrilateral. E is the point of intersection of th...

    Text Solution

    |

  10. The vector vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are sides...

    Text Solution

    |

  11. A, B, C and D have position vectors veca, vecb, vecc and vecd, repecti...

    Text Solution

    |

  12. If vec a and vec b are two unit vectors and theta is the angle between...

    Text Solution

    |

  13. let us define , the length of a vector as |a| + |b| +|c| . this defini...

    Text Solution

    |

  14. Given three vectors veca=6hati-3hatj,vecb=2hati-6hatj and vecc=-2hati+...

    Text Solution

    |

  15. If vecalpha+ vecbeta+ vecgamma=a vecdeltaa n d vecbeta+ vecgamma+ vec...

    Text Solution

    |

  16. In triangle A B C ,/A=30^0,H is the orthocenter and D is the midpoint ...

    Text Solution

    |

  17. Let vec r1, vec r2, vec r3, , vec rn be the position vectors of poin...

    Text Solution

    |

  18. Given three non-zero, non-coplanar vectors veca, vecb and vecc. vecr1=...

    Text Solution

    |

  19. If the vectors vec a and vec bare linearly independent and satisfying ...

    Text Solution

    |

  20. In a trapezium ABCD the vector B vec C = alpha vec(AD). If vec p = A...

    Text Solution

    |