Home
Class 12
MATHS
If G is the centroid of a triangle A B C...

If `G` is the centroid of a triangle `A B C ,` prove that ` vec G A+ vec G B+ vec G C= vec0dot`

A

`vec0`

B

`3 vec(GA)`

C

`3 vec(GB)`

D

`3 vec(GC)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \vec{GA} + \vec{GB} + \vec{GC} = \vec{0} \) where \( G \) is the centroid of triangle \( ABC \), we can follow these steps: ### Step 1: Define the position vectors Let the position vectors of points \( A \), \( B \), and \( C \) with respect to the origin \( O \) be: \[ \vec{OA} = \vec{A}, \quad \vec{OB} = \vec{B}, \quad \vec{OC} = \vec{C} \] ### Step 2: Find the position vector of the centroid \( G \) The centroid \( G \) of triangle \( ABC \) is given by the formula: \[ \vec{OG} = \frac{\vec{A} + \vec{B} + \vec{C}}{3} \] ### Step 3: Express the vectors \( \vec{GA} \), \( \vec{GB} \), and \( \vec{GC} \) Using the definition of vector subtraction, we can express the vectors from \( G \) to \( A \), \( B \), and \( C \): \[ \vec{GA} = \vec{OA} - \vec{OG} = \vec{A} - \frac{\vec{A} + \vec{B} + \vec{C}}{3} \] \[ \vec{GB} = \vec{OB} - \vec{OG} = \vec{B} - \frac{\vec{A} + \vec{B} + \vec{C}}{3} \] \[ \vec{GC} = \vec{OC} - \vec{OG} = \vec{C} - \frac{\vec{A} + \vec{B} + \vec{C}}{3} \] ### Step 4: Substitute and simplify Now we can add these vectors: \[ \vec{GA} + \vec{GB} + \vec{GC} = \left( \vec{A} - \frac{\vec{A} + \vec{B} + \vec{C}}{3} \right) + \left( \vec{B} - \frac{\vec{A} + \vec{B} + \vec{C}}{3} \right) + \left( \vec{C} - \frac{\vec{A} + \vec{B} + \vec{C}}{3} \right) \] Combining the terms: \[ = \vec{A} + \vec{B} + \vec{C} - 3 \cdot \frac{\vec{A} + \vec{B} + \vec{C}}{3} \] \[ = \vec{A} + \vec{B} + \vec{C} - (\vec{A} + \vec{B} + \vec{C}) = \vec{0} \] ### Conclusion Thus, we have shown that: \[ \vec{GA} + \vec{GB} + \vec{GC} = \vec{0} \] This completes the proof.

To prove that \( \vec{GA} + \vec{GB} + \vec{GC} = \vec{0} \) where \( G \) is the centroid of triangle \( ABC \), we can follow these steps: ### Step 1: Define the position vectors Let the position vectors of points \( A \), \( B \), and \( C \) with respect to the origin \( O \) be: \[ \vec{OA} = \vec{A}, \quad \vec{OB} = \vec{B}, \quad \vec{OC} = \vec{C} \] ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise REASONING TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SUBJECTIVE|14 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

If G is the centroid of triangle A B C ,t h e n vec G A+ vec G B+ vec G C is equal to a. vec0 b. 3 vec G A c. 3 vec G B d. 3 vec G C

If G denotes the centroid of Delta \ A B C ,\ then write the value of vec (G A) + vec (G B)+ vec (G C)dot

If a ,b ,c are the lengths of sides, B C ,C A and A B of a triangle A B C , prove that vec B C+ vec C A+ vec A B= vec O and deduce that a/(sinA)=b/(sinB)=c/(sinC)dot

If vec a ,\ vec b ,\ vec c be the vectors represented by the sides of a triangle, taken in order, then prove that vec a+ vec b+ vec c= vec0dot

Let G be the centroid of triangle \ A B Cdot If vec A B= vec a ,\ vec A C= vec b , then the bisector vec A G , in terms of vec a\ a n d\ vec b is 2/3( vec a+ vec b) b. 1/6( vec a+ vec b) c. 1/3( vec a+ vec b) d. 1/2( vec a+ vec b)1

If veca , vec b and vec c represents three sides of a triangle taken in order prove that veca xx vec b = vec b xx vec c = vec c xx vec a

If vec a ,\ vec b ,\ vec c are position vectors of the vertices A ,\ B\ a n d\ C respectively, of a triangle A B C ,\ write the value of vec A B+ vec B C+ vec C Adot

If A,B and C are the vertices of a triangle with position vectors vec(a) , vec(b) and vec(c ) respectively and G is the centroid of Delta ABC , then vec( GA) + vec( GB ) + vec( GC ) is equal to

If vec a , vec b , vec ca n d vec d are the position vectors of the vertices of a cyclic quadrilateral A B C D , prove that (| vec axx vec b+ vec bxx vec d+ vec d xx vec a|)/(( vec b- vec a)dot( vec d- vec a))+(| vec bxx vec c+ vec cxx vec d+ vec d xx vec b|)/(( vec b- vec c)dot( vec d- vec c))=0dot

if G is the centroid of triangleABC such that vec(GB) and vec(GC) are inclined at on obtuse angle, then

CENGAGE ENGLISH-INTRODUCTION TO VECTORS -SINGLE CORRECT ANSWER TYPE
  1. If |veca+ vecb| lt | veca- vecb|, then the angle between veca and vecb...

    Text Solution

    |

  2. A point O is the centre of a circle circumscribed about a triangleA...

    Text Solution

    |

  3. If G is the centroid of a triangle A B C , prove that vec G A+ vec G ...

    Text Solution

    |

  4. If vec a\ is a non zero vecrtor iof modulus vec a\ a n d\ m is a no...

    Text Solution

    |

  5. A B C D parallelogram, and A1a n dB1 are the midpoints of sides B Ca n...

    Text Solution

    |

  6. The position vectors of the points P and Q with respect to the origin ...

    Text Solution

    |

  7. A B C D is a quadrilateral. E is the point of intersection of th...

    Text Solution

    |

  8. The vector vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are sides...

    Text Solution

    |

  9. A, B, C and D have position vectors veca, vecb, vecc and vecd, repecti...

    Text Solution

    |

  10. If vec a and vec b are two unit vectors and theta is the angle between...

    Text Solution

    |

  11. let us define , the length of a vector as |a| + |b| +|c| . this defini...

    Text Solution

    |

  12. Given three vectors veca=6hati-3hatj,vecb=2hati-6hatj and vecc=-2hati+...

    Text Solution

    |

  13. If vecalpha+ vecbeta+ vecgamma=a vecdeltaa n d vecbeta+ vecgamma+ vec...

    Text Solution

    |

  14. In triangle A B C ,/A=30^0,H is the orthocenter and D is the midpoint ...

    Text Solution

    |

  15. Let vec r1, vec r2, vec r3, , vec rn be the position vectors of poin...

    Text Solution

    |

  16. Given three non-zero, non-coplanar vectors veca, vecb and vecc. vecr1=...

    Text Solution

    |

  17. If the vectors vec a and vec bare linearly independent and satisfying ...

    Text Solution

    |

  18. In a trapezium ABCD the vector B vec C = alpha vec(AD). If vec p = A...

    Text Solution

    |

  19. Vectors veca = hati+2hatj+3hatk, vec b = 2hati-hatj+hatk and vecc= 3ha...

    Text Solution

    |

  20. Vectors vec a=-4 hat i+3 hat k ; vec b=14 hat i+2 hat j-5 hat k are l...

    Text Solution

    |