Home
Class 12
MATHS
The vector vec(AB)=3hati+4hatk and vec(A...

The vector `vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk` are sides of a triangle ABC. The length of the median through A is (A) `sqrt(18)` (B) `sqrt(72)` (C) `sqrt(33)` (D) `sqrt(288)`

A

`sqrt(14)`

B

`sqrt(18)`

C

`sqrt(29)`

D

`5`

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of the median through point A in triangle ABC with given vectors \( \vec{AB} \) and \( \vec{AC} \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Given Vectors:** - \( \vec{AB} = 3\hat{i} + 0\hat{j} + 4\hat{k} \) - \( \vec{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k} \) 2. **Use the Median Formula:** The median from vertex A to the midpoint D of side BC can be calculated using the formula: \[ \vec{AD} = \frac{1}{2}(\vec{AB} + \vec{AC}) \] This means we first need to calculate \( \vec{AB} + \vec{AC} \). 3. **Calculate \( \vec{AB} + \vec{AC} \):** \[ \vec{AB} + \vec{AC} = (3\hat{i} + 0\hat{j} + 4\hat{k}) + (5\hat{i} - 2\hat{j} + 4\hat{k}) \] Combine the components: - \( i \) components: \( 3 + 5 = 8 \) - \( j \) components: \( 0 - 2 = -2 \) - \( k \) components: \( 4 + 4 = 8 \) Thus, \[ \vec{AB} + \vec{AC} = 8\hat{i} - 2\hat{j} + 8\hat{k} \] 4. **Calculate \( \vec{AD} \):** Now, substitute into the median formula: \[ \vec{AD} = \frac{1}{2}(8\hat{i} - 2\hat{j} + 8\hat{k}) = 4\hat{i} - \hat{j} + 4\hat{k} \] 5. **Find the Magnitude of \( \vec{AD} \):** The length of the median \( AD \) is given by the magnitude: \[ |\vec{AD}| = \sqrt{(4)^2 + (-1)^2 + (4)^2} \] Calculate each term: - \( (4)^2 = 16 \) - \( (-1)^2 = 1 \) - \( (4)^2 = 16 \) Therefore, \[ |\vec{AD}| = \sqrt{16 + 1 + 16} = \sqrt{33} \] 6. **Conclusion:** The length of the median through A is \( \sqrt{33} \). Thus, the correct answer is option (C) \( \sqrt{33} \).

To find the length of the median through point A in triangle ABC with given vectors \( \vec{AB} \) and \( \vec{AC} \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Given Vectors:** - \( \vec{AB} = 3\hat{i} + 0\hat{j} + 4\hat{k} \) - \( \vec{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k} \) ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise REASONING TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SUBJECTIVE|14 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

If the vectors vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are the sides of a triangle ABC, then the length of the median through A is (A) sqrt(33) (B) sqrt(45) (C) sqrt(18) (D) sqrt(720

If the vectors vec(PQ)=-3hati+4hatj+4hatk and vec(PR)=5hati-2hatj+4hatk are the sides of a triangle PQR, then the length o the median through P is (A) sqrt(14) (B) sqrt(15) (C) sqrt(17) (D) sqrt(18)

veca=hati-hatj+hatk and vecb=2hati+4hati+3hatk are one of the sides and medians respectively of a triangle through the same vertex, then area of the triangle is (A) 1/2 sqrt(83) (B) sqrt(83) (C) 1/2 sqrt(85) (D) sqrt(86)

The component of vec(A)=hati+hatj+5hatk perpendicular to vec(B)=3hati+4hatj is

The vectors veca=hati-2hatj+3hatk, vecb=-2hati+3hatj-4hatk and vec c=hati-3hatj+lambdahatk are coplanar if the value of lambda is

Let vec(OA)=hati+3hatj-2hatk and vec(OB)=3hati+hatj-2hatk. Then vector vec(OC) biecting the angle AOB and C being a point on the line AB is

Two vectors vecalpha=3hati+4hatj and vecbeta=5hati+2hatj-14hatk have the same initial point then their angulr bisector having magnitude 7/3 be (A) 7/(3sqrt(6))(2hati+hatj-hatk) (B) 7/(3sqrt(3))(\hati+hatj-hatk) (C) 7/(3sqrt(3))(hati-hatj+hatk) (D) 7/(3sqrt(3))(hati-hatj-hatk)

Given two vectors veca=-hati + 2hatj + 2hatk and vecb =- 2hati + hatj + 2hatk find |vec a xx vec b|

If vec(OA)=2hati-hatj+hatk, vec(OB)=hati-3hatj-5hatk and vec(OC)=3hati-3hatj-3hatk then show that CB is perpendicular to AC.

If vec(OA) =2hati+3hatj-4hatk and vec(OB) =hatj+hatk are two vectors through the origin O, find the projection of vec(OA) and vec(OB)

CENGAGE ENGLISH-INTRODUCTION TO VECTORS -SINGLE CORRECT ANSWER TYPE
  1. The position vectors of the points P and Q with respect to the origin ...

    Text Solution

    |

  2. A B C D is a quadrilateral. E is the point of intersection of th...

    Text Solution

    |

  3. The vector vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are sides...

    Text Solution

    |

  4. A, B, C and D have position vectors veca, vecb, vecc and vecd, repecti...

    Text Solution

    |

  5. If vec a and vec b are two unit vectors and theta is the angle between...

    Text Solution

    |

  6. let us define , the length of a vector as |a| + |b| +|c| . this defini...

    Text Solution

    |

  7. Given three vectors veca=6hati-3hatj,vecb=2hati-6hatj and vecc=-2hati+...

    Text Solution

    |

  8. If vecalpha+ vecbeta+ vecgamma=a vecdeltaa n d vecbeta+ vecgamma+ vec...

    Text Solution

    |

  9. In triangle A B C ,/A=30^0,H is the orthocenter and D is the midpoint ...

    Text Solution

    |

  10. Let vec r1, vec r2, vec r3, , vec rn be the position vectors of poin...

    Text Solution

    |

  11. Given three non-zero, non-coplanar vectors veca, vecb and vecc. vecr1=...

    Text Solution

    |

  12. If the vectors vec a and vec bare linearly independent and satisfying ...

    Text Solution

    |

  13. In a trapezium ABCD the vector B vec C = alpha vec(AD). If vec p = A...

    Text Solution

    |

  14. Vectors veca = hati+2hatj+3hatk, vec b = 2hati-hatj+hatk and vecc= 3ha...

    Text Solution

    |

  15. Vectors vec a=-4 hat i+3 hat k ; vec b=14 hat i+2 hat j-5 hat k are l...

    Text Solution

    |

  16. If hati-3hatj+5hatk bisects the angle between hata and -hati+2hatj+2ha...

    Text Solution

    |

  17. If 4hati+ 7hatj+ 8hatk, 2hati+ 3hatj+ 4hatk and 2hati+ 5hatj+7hatk are...

    Text Solution

    |

  18. If vec b is a vector whose initial point divides thejoin of 5 hat i...

    Text Solution

    |

  19. The value of the lambda so that P, Q, R, S on the sides OA, OB, OC and...

    Text Solution

    |

  20. ' I ' is the incentre of triangle A B C whose corresponding sides are ...

    Text Solution

    |