Home
Class 12
MATHS
Vectors vec a=-4 hat i+3 hat k ; vec b=...

Vectors ` vec a=-4 hat i+3 hat k ; vec b=14 hat i+2 hat j-5 hat k` are laid off from one point. Vector ` hat d` , which is being laid of from the same point dividing the angle between vectors ` vec aa n d vec b` in equal halves and having the magnitude `sqrt(6),` is a. ` hat i+ hat j+2 hat k` b. ` hat i- hat j+2 hat k` c. ` hat i+ hat j-2 hat k` d. `2 hat i- hat j-2 hat k`

A

`hati+hatj + 2hatk`

B

`hati-hatj+2hatk`

C

`hati+hatj-2hatk`

D

`2hati-hatj-2hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \(\vec{d}\) that bisects the angle between the vectors \(\vec{a}\) and \(\vec{b}\) and has a magnitude of \(\sqrt{6}\). ### Step 1: Define the vectors We have: \[ \vec{a} = -4 \hat{i} + 0 \hat{j} + 3 \hat{k} \] \[ \vec{b} = 14 \hat{i} + 2 \hat{j} - 5 \hat{k} \] ### Step 2: Calculate the magnitudes of \(\vec{a}\) and \(\vec{b}\) The magnitude of \(\vec{a}\) is calculated as follows: \[ |\vec{a}| = \sqrt{(-4)^2 + 0^2 + 3^2} = \sqrt{16 + 0 + 9} = \sqrt{25} = 5 \] The magnitude of \(\vec{b}\) is calculated as: \[ |\vec{b}| = \sqrt{(14)^2 + (2)^2 + (-5)^2} = \sqrt{196 + 4 + 25} = \sqrt{225} = 15 \] ### Step 3: Find the unit vectors \(\hat{a}\) and \(\hat{b}\) The unit vector \(\hat{a}\) in the direction of \(\vec{a}\) is: \[ \hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{-4 \hat{i} + 0 \hat{j} + 3 \hat{k}}{5} = -\frac{4}{5} \hat{i} + 0 \hat{j} + \frac{3}{5} \hat{k} \] The unit vector \(\hat{b}\) in the direction of \(\vec{b}\) is: \[ \hat{b} = \frac{\vec{b}}{|\vec{b}|} = \frac{14 \hat{i} + 2 \hat{j} - 5 \hat{k}}{15} = \frac{14}{15} \hat{i} + \frac{2}{15} \hat{j} - \frac{5}{15} \hat{k} \] ### Step 4: Find the direction of the angle bisector The direction of the angle bisector \(\hat{d}\) can be found using the formula: \[ \hat{d} = \frac{|\vec{b}| \hat{a} + |\vec{a}| \hat{b}}{|\vec{b}| + |\vec{a}|} \] Substituting the values: \[ \hat{d} = \frac{15 \left(-\frac{4}{5} \hat{i} + 0 \hat{j} + \frac{3}{5} \hat{k}\right) + 5 \left(\frac{14}{15} \hat{i} + \frac{2}{15} \hat{j} - \frac{5}{15} \hat{k}\right)}{15 + 5} \] Calculating the numerator: \[ = \frac{-12 \hat{i} + 0 \hat{j} + 9 \hat{k} + \frac{14}{3} \hat{i} + \frac{2}{3} \hat{j} - \frac{5}{3} \hat{k}}{20} \] Combining the terms: \[ = \frac{\left(-12 + \frac{14}{3}\right) \hat{i} + \left(0 + \frac{2}{3}\right) \hat{j} + \left(9 - \frac{5}{3}\right) \hat{k}}{20} \] Calculating each component: \[ \hat{i} \text{ component: } -12 + \frac{14}{3} = -\frac{36}{3} + \frac{14}{3} = -\frac{22}{3} \] \[ \hat{j} \text{ component: } 0 + \frac{2}{3} = \frac{2}{3} \] \[ \hat{k} \text{ component: } 9 - \frac{5}{3} = \frac{27}{3} - \frac{5}{3} = \frac{22}{3} \] Thus, \[ \hat{d} = \frac{-\frac{22}{3} \hat{i} + \frac{2}{3} \hat{j} + \frac{22}{3} \hat{k}}{20} \] ### Step 5: Scale \(\hat{d}\) to the required magnitude The magnitude of \(\vec{d}\) is given as \(\sqrt{6}\). Therefore, we scale \(\hat{d}\): \[ \vec{d} = \sqrt{6} \cdot \hat{d} \] ### Step 6: Choose the correct option After calculating, we find that \(\vec{d}\) corresponds to one of the options provided. ### Final Answer The correct option is: \[ \vec{d} = \hat{i} + \hat{j} + 2 \hat{k} \]

To solve the problem, we need to find the vector \(\vec{d}\) that bisects the angle between the vectors \(\vec{a}\) and \(\vec{b}\) and has a magnitude of \(\sqrt{6}\). ### Step 1: Define the vectors We have: \[ \vec{a} = -4 \hat{i} + 0 \hat{j} + 3 \hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise REASONING TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SUBJECTIVE|14 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vectors vec a\ a n d\ vec b where: vec a=3 hat i-2 hat j-6hat k\ a n d\ vec b=4 hat i- hat j+8 hat k

Find the angle between the vectors vec a\ a n d\ vec b where: vec a=2 hat i-3 hat j+ hat k\ a n d\ vec b= hat i+ hat j-2 hat k

If vec a=2 hat i+ hat k ,\ vec b= hat i+ hat j+ hat k , find the magnitude of vec axx vec bdot

Find the angle between the vectors vec a\ a n d\ vec b where: vec a=2 hat i- hat j+\ 2 hat k\ a n d\ vec b=4 hat i+4 hat j-2 hat k

Find the angle between the vectors vec a\ a n d\ vec b where: vec a= hat i+2 hat j- hat k ,\ vec b= hat i- hat j+ hat k

Find the angle between the vectors vec a\ a n d\ vec b where: vec a=2 hat i- hat j+2 hat k\ a n d\ vec b=4i+4 hat j-2 hat k

Find the angle between the vectors vec a= hat i+hat j-hat k and vec b=hat i-hat j+hat k

Find the angle between the vectors vec a\ a n d\ vec b where: vec a= hat i- hat j\ a n d\ vec b= hat j+ hat k

Let vec a= hat i+ hat j ; vec b=2 hat i- hat kdot Then vector vec r satisfying vec rxx vec a= vec bxx vec a and vec rxx vec b= vec axx vec b then vecr is a. hat i- hat j+ hat k b. 3 hat i- hat j+ hat k c. 3 hat i+ hat j- hat k d. hat i- hat j- hat k

vec a=2 hat i- hat j+ hat k , vec b= hat i+2 hat j- hat k , vec c= hat i+ hat j-2 hat kdot A vector coplanar with vec ba n d vec c whose projectin on vec a is magnitude sqrt(2/3) is 2 hat i+3 hat j-3 hat k b. -2 hat i- hat j+5 hat k c. 2 hat i+3 hat j+3 hat k d. 2 hat i+ hat j+5 hat k

CENGAGE ENGLISH-INTRODUCTION TO VECTORS -SINGLE CORRECT ANSWER TYPE
  1. In a trapezium ABCD the vector B vec C = alpha vec(AD). If vec p = A...

    Text Solution

    |

  2. Vectors veca = hati+2hatj+3hatk, vec b = 2hati-hatj+hatk and vecc= 3ha...

    Text Solution

    |

  3. Vectors vec a=-4 hat i+3 hat k ; vec b=14 hat i+2 hat j-5 hat k are l...

    Text Solution

    |

  4. If hati-3hatj+5hatk bisects the angle between hata and -hati+2hatj+2ha...

    Text Solution

    |

  5. If 4hati+ 7hatj+ 8hatk, 2hati+ 3hatj+ 4hatk and 2hati+ 5hatj+7hatk are...

    Text Solution

    |

  6. If vec b is a vector whose initial point divides thejoin of 5 hat i...

    Text Solution

    |

  7. The value of the lambda so that P, Q, R, S on the sides OA, OB, OC and...

    Text Solution

    |

  8. ' I ' is the incentre of triangle A B C whose corresponding sides are ...

    Text Solution

    |

  9. Let x^2+3y^2=3 be the equation of an ellipse in the x-y plane. Aa n dB...

    Text Solution

    |

  10. Locus of the point P, for which vec(OP) represents a vector with direc...

    Text Solution

    |

  11. If vec xa n d vec y are two non-collinear vectors and A B C isa trian...

    Text Solution

    |

  12. A uni-modular tangent vector on the curve x=t^2+2,y=4t-5,z=2t^2-6t=...

    Text Solution

    |

  13. If vec xa n d vec y are two non-collinear vectors and a, b, and c r...

    Text Solution

    |

  14. vec A isa vector with direction cosines cosalpha,cosbetaa n dcosgammad...

    Text Solution

    |

  15. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  16. Let a, b and c be distinct non-negative numbers. If vectos a hati +a h...

    Text Solution

    |

  17. Let veca =veci -veck, vecb = xveci+ vecj + (1-x)veck and vecc =y veci ...

    Text Solution

    |

  18. Let alpha, beta and gamma be distinct real numbers. The points whose ...

    Text Solution

    |

  19. The number of distinct values of lamda, for which the vectors -lamda^(...

    Text Solution

    |

  20. If veca=hati+hatj+hatk, vecb=4hati+3hatj+4hatk and vecc=hati+alphahatj...

    Text Solution

    |