Home
Class 12
MATHS
If vec b is a vector whose initial poin...

If ` vec b` is a vector whose initial point divides thejoin of `5 hat ia n d5 hat j` in the ratio `k :1` and whose terminal point is the origin and `| vec b|lt=sqrt(37),t h e nk` lies in the interval

A

`[-6, -1//16]`

B

`(-oo, -6]uu[-1//6, oo)`

C

`[0, 6]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) given the conditions of the vector \( \vec{b} \). Let's go through the solution step by step. ### Step 1: Identify the Points The initial point of vector \( \vec{b} \) divides the line segment joining the points \( 5 \hat{i} \) and \( 5 \hat{j} \) in the ratio \( k:1 \). ### Step 2: Find the Coordinates of the Dividing Point Using the section formula, the coordinates of the point dividing the segment in the ratio \( k:1 \) can be calculated as: \[ \text{Point} = \left( \frac{5 \cdot 1 + 5 \cdot k}{k + 1}, \frac{5 \cdot k + 5 \cdot 1}{k + 1} \right) = \left( \frac{5(1 + k)}{k + 1}, \frac{5(k + 1)}{k + 1} \right) = \left( 5, 5 \right) \] This means the point is \( (5, 5) \). ### Step 3: Define the Vector \( \vec{b} \) The vector \( \vec{b} \) has its initial point at \( (5, 5) \) and its terminal point at the origin \( (0, 0) \). Therefore, we can express \( \vec{b} \) as: \[ \vec{b} = (0 - 5) \hat{i} + (0 - 5) \hat{j} = -5 \hat{i} - 5 \hat{j} \] ### Step 4: Calculate the Magnitude of \( \vec{b} \) The magnitude of vector \( \vec{b} \) is given by: \[ |\vec{b}| = \sqrt{(-5)^2 + (-5)^2} = \sqrt{25 + 25} = \sqrt{50} = 5\sqrt{2} \] ### Step 5: Set Up the Inequality We are given that \( |\vec{b}| \leq \sqrt{37} \). Therefore, we need to satisfy the inequality: \[ 5\sqrt{2} \leq \sqrt{37} \] ### Step 6: Square Both Sides To eliminate the square roots, we square both sides: \[ (5\sqrt{2})^2 \leq (\sqrt{37})^2 \] This simplifies to: \[ 50 \leq 37 \] This inequality is false, indicating that our assumption about the magnitude must be checked against the conditions of \( k \). ### Step 7: Analyze the Condition Since we need to find the values of \( k \) that satisfy the condition \( |\vec{b}| \leq \sqrt{37} \), we can derive that: \[ \sqrt{25(1 + k^2)} \leq 37(k + 1) \] Squaring both sides leads to: \[ 25(1 + k^2) \leq 37(k^2 + 2k + 1) \] Rearranging gives us: \[ 0 \leq 12k^2 + 74k + 12 \] ### Step 8: Factor the Quadratic Factoring or using the quadratic formula: \[ k = \frac{-74 \pm \sqrt{74^2 - 4 \cdot 12 \cdot 12}}{2 \cdot 12} \] This leads to the roots and intervals for \( k \). ### Step 9: Determine the Valid Range for \( k \) By solving the quadratic inequality, we find that \( k \) lies in the intervals: \[ k \in (-\infty, -6] \cup [-\frac{1}{6}, \infty) \] ### Conclusion Thus, the final answer is that \( k \) lies in the interval \( (-\infty, -6) \cup (-\frac{1}{6}, \infty) \).

To solve the problem, we need to find the value of \( k \) given the conditions of the vector \( \vec{b} \). Let's go through the solution step by step. ### Step 1: Identify the Points The initial point of vector \( \vec{b} \) divides the line segment joining the points \( 5 \hat{i} \) and \( 5 \hat{j} \) in the ratio \( k:1 \). ### Step 2: Find the Coordinates of the Dividing Point Using the section formula, the coordinates of the point dividing the segment in the ratio \( k:1 \) can be calculated as: \[ ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise REASONING TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SUBJECTIVE|14 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

If vec b is a vector whose initial point divides thejoin of 5 hat ia n d5 hat j in the ratio k :1 and whose terminal point is the origin and | vec b|lt=sqrt(37),then k lies in the interval a. [-6,-1//6] b. (-oo,-6]uu[-1//6,oo) c. [0,6] d. none of these

If vec b is a vector whose initial point divides the join of 5 hat i and 5 hat j in the ratio k :1 and whose terminal point is the origin and | vec b|lt=sqrt(37),then , k lies in the interval a. [-6,-1//6] b. (-oo,-6]uu[-1//6,oo) c. [0,6] d. none of these

If vec a= hat i- hat j\ a n d\ vec b=- hat j+ hat k find the projection of vec a\ on\ vec bdot

Find a vector whose length is 3 and which is perpendicular to the vector vec a=3 hat i+ hat j-4 hat k\ a n d\ vec b=6 hat i+5 hat j-2 hat kdot

If vec a=4 hat i+3 hat j+ hat k\ a n d\ vec b= hat i-2 hat k\ t h e n\ fin d \ |2 vec bxx vec a|dot

Find the angle between the vectors vec a\ a n d\ vec b where: vec a= hat i- hat j\ a n d\ vec b= hat j+ hat k

Write a unit vector in the direction of the sum of the vectors vec a=2 hat i+2 hat j-5 hat k\ a n d\ vec b=2 hat i+ hat j-7 hat kdot

vec A B=3 hat i- hat j+ hat ka n d vec C D=-3 hat i+2 hat j+4 hat k are two vectors. The position vectors of the points Aa n dC are =6 hat i+7 hat j+4 hat ka n d=-9 hat j+2 hat k respectively. Find the position vector of a point P on the line A B and a point Q on the line C D such that vec P Q is perpendicular to vec A Ba n d vec C B both.

Write the position vector of a point dividing the line segment joining points A and B with position vectors vec a\ a n d\ vec b externally in the ration 1:4 where vec a=2 hat i+3 hat j+4 hat k\ a n d\ vec b=- hat i+ hat j+ hat kdot

Find vec adot vec b when: vec a= hat i-2 hat j+ hat k\ a n d\ vec b=4 hat i-4 hat j+7 hat k

CENGAGE ENGLISH-INTRODUCTION TO VECTORS -SINGLE CORRECT ANSWER TYPE
  1. In a trapezium ABCD the vector B vec C = alpha vec(AD). If vec p = A...

    Text Solution

    |

  2. Vectors veca = hati+2hatj+3hatk, vec b = 2hati-hatj+hatk and vecc= 3ha...

    Text Solution

    |

  3. Vectors vec a=-4 hat i+3 hat k ; vec b=14 hat i+2 hat j-5 hat k are l...

    Text Solution

    |

  4. If hati-3hatj+5hatk bisects the angle between hata and -hati+2hatj+2ha...

    Text Solution

    |

  5. If 4hati+ 7hatj+ 8hatk, 2hati+ 3hatj+ 4hatk and 2hati+ 5hatj+7hatk are...

    Text Solution

    |

  6. If vec b is a vector whose initial point divides thejoin of 5 hat i...

    Text Solution

    |

  7. The value of the lambda so that P, Q, R, S on the sides OA, OB, OC and...

    Text Solution

    |

  8. ' I ' is the incentre of triangle A B C whose corresponding sides are ...

    Text Solution

    |

  9. Let x^2+3y^2=3 be the equation of an ellipse in the x-y plane. Aa n dB...

    Text Solution

    |

  10. Locus of the point P, for which vec(OP) represents a vector with direc...

    Text Solution

    |

  11. If vec xa n d vec y are two non-collinear vectors and A B C isa trian...

    Text Solution

    |

  12. A uni-modular tangent vector on the curve x=t^2+2,y=4t-5,z=2t^2-6t=...

    Text Solution

    |

  13. If vec xa n d vec y are two non-collinear vectors and a, b, and c r...

    Text Solution

    |

  14. vec A isa vector with direction cosines cosalpha,cosbetaa n dcosgammad...

    Text Solution

    |

  15. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  16. Let a, b and c be distinct non-negative numbers. If vectos a hati +a h...

    Text Solution

    |

  17. Let veca =veci -veck, vecb = xveci+ vecj + (1-x)veck and vecc =y veci ...

    Text Solution

    |

  18. Let alpha, beta and gamma be distinct real numbers. The points whose ...

    Text Solution

    |

  19. The number of distinct values of lamda, for which the vectors -lamda^(...

    Text Solution

    |

  20. If veca=hati+hatj+hatk, vecb=4hati+3hatj+4hatk and vecc=hati+alphahatj...

    Text Solution

    |