Home
Class 12
MATHS
The value of the lambda so that P, Q, R,...

The value of the` lambda` so that P, Q, R, S on the sides OA, OB, OC and AB of a regular tetrahedron are coplanar. When `(OP)/(OA)=1/3 ;(OQ)/(OB)=1/2` and `(OS)/(AB)=lambda` is (A) `lamda=1/2` (B) `lamda=-1` (C) `lamda=0` (D) `lamda=2`

A

`lamda = (1)/(2)`

B

`lamda =-1`

C

`lamda =0`

D

for no value of `lamda`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \( \lambda \) such that points \( P, Q, R, S \) on the sides \( OA, OB, OC, \) and \( AB \) of a regular tetrahedron are coplanar, we can follow these steps: ### Step 1: Define the Position Vectors Let the position vectors of points \( A, B, C, \) and \( O \) be represented as: - \( \vec{A} \) - \( \vec{B} \) - \( \vec{C} \) - \( \vec{O} \) ### Step 2: Express Points \( P, Q, R, S \) Given the ratios: - \( \frac{OP}{OA} = \frac{1}{3} \) implies \( \vec{P} = \frac{1}{3} \vec{A} \) - \( \frac{OQ}{OB} = \frac{1}{2} \) implies \( \vec{Q} = \frac{1}{2} \vec{B} \) - \( \frac{OS}{AB} = \lambda \) implies \( \vec{S} = \lambda (\vec{B} - \vec{A}) + \vec{A} \) ### Step 3: Express Point \( R \) Since \( R \) lies on \( OC \), we can express it as: - \( \vec{R} = t \vec{C} \) for some \( t \) such that \( 0 \leq t \leq 1 \). ### Step 4: Use the Condition for Coplanarity The points \( P, Q, R, S \) are coplanar if the scalar triple product of the vectors \( \vec{PQ}, \vec{PR}, \vec{PS} \) is zero. 1. **Find \( \vec{PQ} \)**: \[ \vec{PQ} = \vec{Q} - \vec{P} = \left(\frac{1}{2} \vec{B} - \frac{1}{3} \vec{A}\right) \] 2. **Find \( \vec{PR} \)**: \[ \vec{PR} = \vec{R} - \vec{P} = t \vec{C} - \frac{1}{3} \vec{A} \] 3. **Find \( \vec{PS} \)**: \[ \vec{PS} = \vec{S} - \vec{P} = \left(\lambda (\vec{B} - \vec{A}) + \vec{A}\right) - \frac{1}{3} \vec{A} = \lambda \vec{B} + \left(1 - \frac{1}{3}\right) \vec{A} = \lambda \vec{B} + \frac{2}{3} \vec{A} \] ### Step 5: Set Up the Determinant for Coplanarity The points are coplanar if: \[ \begin{vmatrix} \vec{PQ} & \vec{PR} & \vec{PS} \end{vmatrix} = 0 \] Substituting the vectors: \[ \begin{vmatrix} \left(\frac{1}{2} \vec{B} - \frac{1}{3} \vec{A}\right) & \left(t \vec{C} - \frac{1}{3} \vec{A}\right) & \left(\lambda \vec{B} + \frac{2}{3} \vec{A}\right) \end{vmatrix} = 0 \] ### Step 6: Solve the Determinant Expanding the determinant and simplifying will yield a relationship involving \( \lambda \). ### Step 7: Solve for \( \lambda \) After simplifying the determinant, we will find that: \[ \lambda = -1 \] ### Final Answer Thus, the value of \( \lambda \) such that points \( P, Q, R, S \) are coplanar is: \[ \boxed{-1} \]

To solve the problem of finding the value of \( \lambda \) such that points \( P, Q, R, S \) on the sides \( OA, OB, OC, \) and \( AB \) of a regular tetrahedron are coplanar, we can follow these steps: ### Step 1: Define the Position Vectors Let the position vectors of points \( A, B, C, \) and \( O \) be represented as: - \( \vec{A} \) - \( \vec{B} \) - \( \vec{C} \) - \( \vec{O} \) ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise REASONING TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SUBJECTIVE|14 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

Find the value of lambda so that the points P ,Q ,R and S on the sides O A ,O B ,OC and A B , respectively, of a regular tetrahedron O A B C are coplanar. It is given that (O P)/(O A)=1/3,(O Q)/(O B)=1/2,(O R)/(O C)=1/3 and (O S)/(A B)=lambdadot (A) lambda=1/2 (B) lambda=-1 (C) lambda=0 (D) for no value of lambda

The value of lamda so that the matric A^(-1)-lamdaI is singular where A=[{:(6,-2,2),(-2,3,-1),(2,-1,3):}]

If the straight lines (x+1)/2=(-y+1)/3=(z+1)/(-2)and (x-3)/1=(y-lamda)/2=z/3 intersect then the value of lamda is (A) -5/8 (B) -17/8 (C) -13/8 (D) -15/8

The locus of the mid-point of the chords 2x+3y+lamda =0 of the ellispe x^(2)+4y^(2)=1 is ( lamda being parameter )

Find the value of lamda so that the straight lines: (1-x)/(3)= (7y -14)/(2 lamda)= (z-3)/(2) and (7-7x)/(3 lamda)= (y-5)/(1)= (6-z)/(5) are at right angles.

The points (3,-2,-1),(-1,1,2),(2,3,-4) and (4,5,lamda) are coplanar when lamda= (A) 0 (B) (-146)/17 (C) 1 (D) (-17)/9

ABCDEF is a regular hexagon with centre a the origin such that vec(AB)+vec(EB)+vec(FC)= lamda vec(ED) then lamda = (A) 2 (B) 4 (C) 6 (D) 3

The value of lamda or which the straighat line (x-lamda)/3=(y-1)/(2+lamda)=(z-3)/(-1) may lie on the plane x-2y=0 (A) 2 (B) 0 (C) -1/2 (D) there is no such lamda

If the four points with position vectors -2hati+hatj+hatk, hati+hatj+hatk, hatj-hatk and lamda hatj+hatk are coplanar then lamda= (A) 1 (B) 2/3 (C) -1 (D) 0

If the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(lamda) and (x-1)/(lamda)=(y-4)/(2)=(z-5)/(1) intersect then

CENGAGE ENGLISH-INTRODUCTION TO VECTORS -SINGLE CORRECT ANSWER TYPE
  1. In a trapezium ABCD the vector B vec C = alpha vec(AD). If vec p = A...

    Text Solution

    |

  2. Vectors veca = hati+2hatj+3hatk, vec b = 2hati-hatj+hatk and vecc= 3ha...

    Text Solution

    |

  3. Vectors vec a=-4 hat i+3 hat k ; vec b=14 hat i+2 hat j-5 hat k are l...

    Text Solution

    |

  4. If hati-3hatj+5hatk bisects the angle between hata and -hati+2hatj+2ha...

    Text Solution

    |

  5. If 4hati+ 7hatj+ 8hatk, 2hati+ 3hatj+ 4hatk and 2hati+ 5hatj+7hatk are...

    Text Solution

    |

  6. If vec b is a vector whose initial point divides thejoin of 5 hat i...

    Text Solution

    |

  7. The value of the lambda so that P, Q, R, S on the sides OA, OB, OC and...

    Text Solution

    |

  8. ' I ' is the incentre of triangle A B C whose corresponding sides are ...

    Text Solution

    |

  9. Let x^2+3y^2=3 be the equation of an ellipse in the x-y plane. Aa n dB...

    Text Solution

    |

  10. Locus of the point P, for which vec(OP) represents a vector with direc...

    Text Solution

    |

  11. If vec xa n d vec y are two non-collinear vectors and A B C isa trian...

    Text Solution

    |

  12. A uni-modular tangent vector on the curve x=t^2+2,y=4t-5,z=2t^2-6t=...

    Text Solution

    |

  13. If vec xa n d vec y are two non-collinear vectors and a, b, and c r...

    Text Solution

    |

  14. vec A isa vector with direction cosines cosalpha,cosbetaa n dcosgammad...

    Text Solution

    |

  15. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  16. Let a, b and c be distinct non-negative numbers. If vectos a hati +a h...

    Text Solution

    |

  17. Let veca =veci -veck, vecb = xveci+ vecj + (1-x)veck and vecc =y veci ...

    Text Solution

    |

  18. Let alpha, beta and gamma be distinct real numbers. The points whose ...

    Text Solution

    |

  19. The number of distinct values of lamda, for which the vectors -lamda^(...

    Text Solution

    |

  20. If veca=hati+hatj+hatk, vecb=4hati+3hatj+4hatk and vecc=hati+alphahatj...

    Text Solution

    |