Home
Class 12
MATHS
' I ' is the incentre of triangle A B C ...

`' I '` is the incentre of triangle `A B C` whose corresponding sides are `a , b ,c ,` rspectively. `a vec I A+b vec I B+c vec I C` is always equal to a. ` vec0` b. `(a+b+c) vec B C` c. `( vec a+ vec b+ vec c) vec A C` d. `(a+b+c) vec A B`

A

`vec0`

B

`(a+ b + c) vec(BC)`

C

`(veca+ vecb+vecc) vec(AC)`

D

`(a+b+c) vec(AB)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( a \vec{IA} + b \vec{IB} + c \vec{IC} \), where \( I \) is the incenter of triangle \( ABC \) and \( a, b, c \) are the lengths of the sides opposite to vertices \( A, B, C \) respectively. ### Step-by-Step Solution: 1. **Understanding the Incenter**: The incenter \( I \) of triangle \( ABC \) is the point where the angle bisectors of the triangle intersect, and it is equidistant from all three sides of the triangle. 2. **Position Vectors**: Let us denote the position vectors of points \( A, B, C \) as \( \vec{P}, \vec{Q}, \vec{R} \) respectively. Therefore: - \( \vec{IA} = \vec{P} - \vec{I} \) - \( \vec{IB} = \vec{Q} - \vec{I} \) - \( \vec{IC} = \vec{R} - \vec{I} \) 3. **Assuming the Incenter as Origin**: For simplification, we can assume the position vector of the incenter \( I \) is the origin. Thus, \( \vec{I} = \vec{0} \). This leads to: - \( \vec{IA} = \vec{P} \) - \( \vec{IB} = \vec{Q} \) - \( \vec{IC} = \vec{R} \) 4. **Using the Formula for Incenter**: The position vector of the incenter \( I \) can also be expressed as: \[ \vec{I} = \frac{a \vec{A} + b \vec{B} + c \vec{C}}{a + b + c} \] Since we assumed \( \vec{I} = \vec{0} \), we have: \[ \vec{0} = \frac{a \vec{P} + b \vec{Q} + c \vec{R}}{a + b + c} \] 5. **Cross Multiplying**: By cross-multiplying, we get: \[ a \vec{P} + b \vec{Q} + c \vec{R} = \vec{0} \] 6. **Final Expression**: Thus, we can conclude that: \[ a \vec{IA} + b \vec{IB} + c \vec{IC} = \vec{0} \] ### Conclusion: The value of \( a \vec{IA} + b \vec{IB} + c \vec{IC} \) is the zero vector \( \vec{0} \). ### Answer: The correct option is **(a) \( \vec{0} \)**.

To solve the problem, we need to find the value of the expression \( a \vec{IA} + b \vec{IB} + c \vec{IC} \), where \( I \) is the incenter of triangle \( ABC \) and \( a, b, c \) are the lengths of the sides opposite to vertices \( A, B, C \) respectively. ### Step-by-Step Solution: 1. **Understanding the Incenter**: The incenter \( I \) of triangle \( ABC \) is the point where the angle bisectors of the triangle intersect, and it is equidistant from all three sides of the triangle. 2. **Position Vectors**: ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise REASONING TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SUBJECTIVE|14 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

Prove that [ vec a , vec b , vec c+ vec d]=[ vec a , vec b , vec c]+[ vec a , vec b , vec d]

( vec a+2 vec b- vec c)dot{( vec a- vec b)xx( vec a- vec b- vec c)} is equal to [ vec a\ vec b\ vec c] b. c. 2[ vec a\ vec b\ vec c] d. 3[ vec a\ vec b\ vec c]

If [ vec a vec b vec c]=2, then find the value of [( vec a+2 vec b- vec c)( vec a- vec b)( vec a- vec b- vec c)]dot

The scalar vec Adot ( ( vec B+ vec C)xx( vec A+ vec B+ vec C)) equals a. 0 b. [ vec A vec B vec C]+[ vec B vec C vec A] c. [ vec A vec B vec C] d. none of these

A B C D E is pentagon, prove that vec A B + vec B C + vec C D + vec D E+ vec E A = vec0 vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C

A B C D E is pentagon, prove that vec A B + vec B C + vec C D + vec D E+ vec E A = vec0 vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C

If vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c= vec0, then write the value of vec a . vec b+ vec b . vec c+ vec c . vec a

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

If veca , vec b , vec c are three vectors such that veca+ vec b+ vec c= vec0 , then prove that vec axx vec b= vec bxx vec c= vec cxx vec a

( vec a+ vec b)dot( vec b+ vec c)xx( vec a+ vec b+ vec c)= [ vec a\ vec b\ vec c] b. "\ "0"\ " c. 2[ vec a\ vec b\ vec c] d. -[ vec a\ vec b\ vec c]

CENGAGE ENGLISH-INTRODUCTION TO VECTORS -SINGLE CORRECT ANSWER TYPE
  1. In a trapezium ABCD the vector B vec C = alpha vec(AD). If vec p = A...

    Text Solution

    |

  2. Vectors veca = hati+2hatj+3hatk, vec b = 2hati-hatj+hatk and vecc= 3ha...

    Text Solution

    |

  3. Vectors vec a=-4 hat i+3 hat k ; vec b=14 hat i+2 hat j-5 hat k are l...

    Text Solution

    |

  4. If hati-3hatj+5hatk bisects the angle between hata and -hati+2hatj+2ha...

    Text Solution

    |

  5. If 4hati+ 7hatj+ 8hatk, 2hati+ 3hatj+ 4hatk and 2hati+ 5hatj+7hatk are...

    Text Solution

    |

  6. If vec b is a vector whose initial point divides thejoin of 5 hat i...

    Text Solution

    |

  7. The value of the lambda so that P, Q, R, S on the sides OA, OB, OC and...

    Text Solution

    |

  8. ' I ' is the incentre of triangle A B C whose corresponding sides are ...

    Text Solution

    |

  9. Let x^2+3y^2=3 be the equation of an ellipse in the x-y plane. Aa n dB...

    Text Solution

    |

  10. Locus of the point P, for which vec(OP) represents a vector with direc...

    Text Solution

    |

  11. If vec xa n d vec y are two non-collinear vectors and A B C isa trian...

    Text Solution

    |

  12. A uni-modular tangent vector on the curve x=t^2+2,y=4t-5,z=2t^2-6t=...

    Text Solution

    |

  13. If vec xa n d vec y are two non-collinear vectors and a, b, and c r...

    Text Solution

    |

  14. vec A isa vector with direction cosines cosalpha,cosbetaa n dcosgammad...

    Text Solution

    |

  15. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  16. Let a, b and c be distinct non-negative numbers. If vectos a hati +a h...

    Text Solution

    |

  17. Let veca =veci -veck, vecb = xveci+ vecj + (1-x)veck and vecc =y veci ...

    Text Solution

    |

  18. Let alpha, beta and gamma be distinct real numbers. The points whose ...

    Text Solution

    |

  19. The number of distinct values of lamda, for which the vectors -lamda^(...

    Text Solution

    |

  20. If veca=hati+hatj+hatk, vecb=4hati+3hatj+4hatk and vecc=hati+alphahatj...

    Text Solution

    |