Home
Class 12
MATHS
The sides of a parallelogram are 2hati +...

The sides of a parallelogram are `2hati +4hatj -5hatk and hati + 2hatj +3hatk `. The unit vector parallel to one of the diagonals is

A

`(1)/(7)(3hati +6hatj-2hatk)`

B

`(1)/(7)(3hati-6hatj -2hatk)`

C

`(1)/(sqrt(69))(hati +2hatj +8hatk)`

D

`(1)/(sqrt(69))(-hati -2hatj +8hatk)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector parallel to one of the diagonals of the parallelogram defined by the vectors \( \mathbf{a} = 2\hat{i} + 4\hat{j} - 5\hat{k} \) and \( \mathbf{b} = \hat{i} + 2\hat{j} + 3\hat{k} \), we will follow these steps: ### Step 1: Identify the vectors Let: - \( \mathbf{a} = 2\hat{i} + 4\hat{j} - 5\hat{k} \) - \( \mathbf{b} = \hat{i} + 2\hat{j} + 3\hat{k} \) ### Step 2: Calculate the diagonals The diagonals of the parallelogram can be calculated as: 1. \( \mathbf{p} = \mathbf{a} + \mathbf{b} \) 2. \( \mathbf{q} = \mathbf{b} - \mathbf{a} \) Calculating \( \mathbf{p} \): \[ \mathbf{p} = (2\hat{i} + 4\hat{j} - 5\hat{k}) + (\hat{i} + 2\hat{j} + 3\hat{k}) \] \[ = (2 + 1)\hat{i} + (4 + 2)\hat{j} + (-5 + 3)\hat{k} \] \[ = 3\hat{i} + 6\hat{j} - 2\hat{k} \] Calculating \( \mathbf{q} \): \[ \mathbf{q} = (\hat{i} + 2\hat{j} + 3\hat{k}) - (2\hat{i} + 4\hat{j} - 5\hat{k}) \] \[ = (1 - 2)\hat{i} + (2 - 4)\hat{j} + (3 + 5)\hat{k} \] \[ = -\hat{i} - 2\hat{j} + 8\hat{k} \] ### Step 3: Find the magnitudes of the diagonals Now we will find the magnitudes of \( \mathbf{p} \) and \( \mathbf{q} \). Magnitude of \( \mathbf{p} \): \[ |\mathbf{p}| = \sqrt{(3)^2 + (6)^2 + (-2)^2} = \sqrt{9 + 36 + 4} = \sqrt{49} = 7 \] Magnitude of \( \mathbf{q} \): \[ |\mathbf{q}| = \sqrt{(-1)^2 + (-2)^2 + (8)^2} = \sqrt{1 + 4 + 64} = \sqrt{69} \] ### Step 4: Calculate the unit vectors The unit vector parallel to diagonal \( \mathbf{p} \): \[ \hat{u}_p = \frac{\mathbf{p}}{|\mathbf{p}|} = \frac{3\hat{i} + 6\hat{j} - 2\hat{k}}{7} = \frac{3}{7}\hat{i} + \frac{6}{7}\hat{j} - \frac{2}{7}\hat{k} \] The unit vector parallel to diagonal \( \mathbf{q} \): \[ \hat{u}_q = \frac{\mathbf{q}}{|\mathbf{q}|} = \frac{-\hat{i} - 2\hat{j} + 8\hat{k}}{\sqrt{69}} = -\frac{1}{\sqrt{69}}\hat{i} - \frac{2}{\sqrt{69}}\hat{j} + \frac{8}{\sqrt{69}}\hat{k} \] ### Final Answer The unit vectors parallel to the diagonals of the parallelogram are: 1. \( \hat{u}_p = \frac{3}{7}\hat{i} + \frac{6}{7}\hat{j} - \frac{2}{7}\hat{k} \) 2. \( \hat{u}_q = -\frac{1}{\sqrt{69}}\hat{i} - \frac{2}{\sqrt{69}}\hat{j} + \frac{8}{\sqrt{69}}\hat{k} \)

To find the unit vector parallel to one of the diagonals of the parallelogram defined by the vectors \( \mathbf{a} = 2\hat{i} + 4\hat{j} - 5\hat{k} \) and \( \mathbf{b} = \hat{i} + 2\hat{j} + 3\hat{k} \), we will follow these steps: ### Step 1: Identify the vectors Let: - \( \mathbf{a} = 2\hat{i} + 4\hat{j} - 5\hat{k} \) - \( \mathbf{b} = \hat{i} + 2\hat{j} + 3\hat{k} \) ### Step 2: Calculate the diagonals ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise REASONING TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|40 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

The sides of a parallelogram are 2 hati + 4 hatj -5 hatk and hati + 2 hatj + 3 hatk , then the unit vector parallel to one of the diagonals is

The two adjacent sides of a parallelogram are 2hati+3hatj-5hatk and hati+2hatj+3hatk . Find the uit vectors along the diagonal of te parallelogram.

Vectors along the adjacent sides of parallelogram are veca = 2hati +4hatj -5hatk and vecb = hati + 2hatj +3hatk . Find the length of the longer diagonal of the parallelogram.

If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati - 3 hatj + 4 hatk, then the lengths of its sides are

Vectors along the adjacent sides of parallelogram are veca = hati +2hatj +hatk and vecb = 2hati + 4hatj +hatk . Find the length of the longer diagonal of the parallelogram.

Area of a parallelogram, whose diagonals are 3hati+hatj-2hatk and hati-3hatj+4hatk will be:

If vecA= 6hati- 6hatj+5hatk and vecB= hati+ 2hatj-hatk , then find a unit vector parallel to the resultant of veca & vecB .

If the diagonals of a parallelogram are represented by the vectors 3hati + hatj -2hatk and hati + 3hatj -4hatk , then its area in square units , is

Find the area of the parallelogram having diagonals 2hati-hatj+hatk and 3hati+3hatj-hatk

If vectors A and B be respectively equal to 3hati - 4hatj + 5hatk and 2hati + 3hatj - 4hatk. Find the unit vector parallel t A + B