Home
Class 12
MATHS
If points hati+hatj, hati -hatj and p ha...

If points `hati+hatj, hati -hatj and p hati +qhatj+rhatk` are collinear, then

A

`p=1`

B

`r=0`

C

`q in R`

D

`q ne 1`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( p \), \( q \), and \( r \) such that the points \( \hat{i} + \hat{j} \), \( \hat{i} - \hat{j} \), and \( p\hat{i} + q\hat{j} + r\hat{k} \) are collinear, we can follow these steps: ### Step 1: Define the Points Let: - Point A = \( \hat{i} + \hat{j} \) - Point B = \( \hat{i} - \hat{j} \) - Point C = \( p\hat{i} + q\hat{j} + r\hat{k} \) ### Step 2: Find the Vectors AB and BC To check for collinearity, we need to find the vectors \( \overrightarrow{AB} \) and \( \overrightarrow{BC} \). 1. **Vector \( \overrightarrow{AB} \)**: \[ \overrightarrow{AB} = B - A = (\hat{i} - \hat{j}) - (\hat{i} + \hat{j}) = \hat{i} - \hat{j} - \hat{i} - \hat{j} = -2\hat{j} \] 2. **Vector \( \overrightarrow{BC} \)**: \[ \overrightarrow{BC} = C - B = (p\hat{i} + q\hat{j} + r\hat{k}) - (\hat{i} - \hat{j}) = (p - 1)\hat{i} + (q + 1)\hat{j} + r\hat{k} \] ### Step 3: Set Up the Collinearity Condition For points A, B, and C to be collinear, vectors \( \overrightarrow{AB} \) and \( \overrightarrow{BC} \) must be parallel. This implies that the ratios of their components must be equal. From the vectors: - \( \overrightarrow{AB} = -2\hat{j} \) implies the \( \hat{i} \) component is 0 and the \( \hat{j} \) component is -2. - For \( \overrightarrow{BC} \) to be parallel to \( \overrightarrow{AB} \): \[ \frac{p - 1}{0} = \frac{q + 1}{-2} = \frac{r}{0} \] ### Step 4: Solve for \( p \), \( q \), and \( r \) 1. From \( \frac{p - 1}{0} \): This implies \( p - 1 = 0 \) (since the \( \hat{i} \) component must be 0). Thus: \[ p = 1 \] 2. From \( \frac{q + 1}{-2} = 1 \): \[ q + 1 = -2 \implies q = -3 \] 3. From \( \frac{r}{0} \): This implies \( r = 0 \) (since the \( \hat{k} \) component must be 0). ### Final Values Thus, we have: - \( p = 1 \) - \( q = -3 \) - \( r = 0 \) ### Summary The values of \( p \), \( q \), and \( r \) are: \[ p = 1, \quad q = -3, \quad r = 0 \]

To determine the values of \( p \), \( q \), and \( r \) such that the points \( \hat{i} + \hat{j} \), \( \hat{i} - \hat{j} \), and \( p\hat{i} + q\hat{j} + r\hat{k} \) are collinear, we can follow these steps: ### Step 1: Define the Points Let: - Point A = \( \hat{i} + \hat{j} \) - Point B = \( \hat{i} - \hat{j} \) - Point C = \( p\hat{i} + q\hat{j} + r\hat{k} \) ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise REASONING TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|40 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

If the points with position vectors 20 hati + p hatj , 5 hati - hatj and 10 hati - 13 hatj are collinear, then p =

If the points with position vectors 20 hati + p hatj , 5 hati - hatj and 10 hati - 13 hatj are collinear, then p =

If the vectors a hati + 3 hatj - 2 hatk and 3 hati - 4 hatj + b hatk are collinear, then (a,b) =

If the points whose position vectors are 2hati + hatj + hatk , 6hati - hatj + 2 hatk and 14 hati - 5 hatj + p hatk are collinear, then p =

The points with position vectors 10hati+3hatj,12hati-5hatj and ahati+11hatj are collinear, if a is equal to

If P, Q, R are three points with respective position vectors hati + hatj, hati -hatj and a hati + b hatj + c hatk . The points P, Q, R are collinear, if

Prove that the points hati-hatj, 4hati-3hatj+ hatk and 2hati-4hatj+5hatk are the vertices of a right angled triangle.

If the vectots phati+hatj+hatk, hati+qhatj+hatk and hati+hatj+rhatk(p!=q!=r!=1) are coplanar, then the value of pqr-(p+q+r) , is

If three points A, B and C have position vectors hati + x hatj + 3 hatk, 3 hati + 4 hatj + 7 hatk and y hati -2hatj - 5 hatk respectively are collinear, then (x, y) =

The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52hatj are collinear if (A) a=-40 (B) a=40 (C) a=20 (D) none of these