Home
Class 12
MATHS
veca, vecb and vecc are three coplanar v...

`veca, vecb and vecc` are three coplanar vectors such that `veca + vecb + vecc=0`. If three vectors `vecp, vecq and vecr` are parallel to `veca, vecb and vecc`, respectively, and have integral but different magnitudes, then among the following options, `|vecp +vecq + vecr|` can take a value equal to

A

`1`

B

`0`

C

`sqrt3`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given information about the vectors. ### Step 1: Understand the Given Vectors We have three coplanar vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) such that: \[ \vec{a} + \vec{b} + \vec{c} = 0 \] This implies that \(\vec{c} = -(\vec{a} + \vec{b})\). ### Step 2: Define Parallel Vectors We define three new vectors \(\vec{p}\), \(\vec{q}\), and \(\vec{r}\) which are parallel to \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) respectively. We can express them as: \[ \vec{p} = k_1 \vec{a}, \quad \vec{q} = k_2 \vec{b}, \quad \vec{r} = k_3 \vec{c} \] where \(k_1\), \(k_2\), and \(k_3\) are scalar multiples (magnitudes) of the vectors and are integers. ### Step 3: Substitute \(\vec{c}\) Substituting \(\vec{c}\) in terms of \(\vec{a}\) and \(\vec{b}\): \[ \vec{r} = k_3 (-\vec{a} - \vec{b}) = -k_3 \vec{a} - k_3 \vec{b} \] ### Step 4: Calculate \(\vec{p} + \vec{q} + \vec{r}\) Now, we can find the sum of the vectors: \[ \vec{p} + \vec{q} + \vec{r} = k_1 \vec{a} + k_2 \vec{b} - k_3 \vec{a} - k_3 \vec{b} \] This simplifies to: \[ (k_1 - k_3) \vec{a} + (k_2 - k_3) \vec{b} \] ### Step 5: Find the Magnitude The magnitude of \(\vec{p} + \vec{q} + \vec{r}\) is given by: \[ |\vec{p} + \vec{q} + \vec{r}| = |(k_1 - k_3) \vec{a} + (k_2 - k_3) \vec{b}| \] Using the properties of magnitudes, we can express this as: \[ |\vec{p} + \vec{q} + \vec{r}| = \sqrt{(k_1 - k_3)^2 |\vec{a}|^2 + (k_2 - k_3)^2 |\vec{b}|^2 + 2(k_1 - k_3)(k_2 - k_3) |\vec{a}||\vec{b}|\cos(\theta)} \] where \(\theta\) is the angle between \(\vec{a}\) and \(\vec{b}\). ### Step 6: Integral Magnitudes Since \(k_1\), \(k_2\), and \(k_3\) are integral and different, we can choose values for \(k_1\), \(k_2\), and \(k_3\) such that they are distinct integers. ### Step 7: Evaluate Possible Values We can try different combinations of \(k_1\), \(k_2\), and \(k_3\) to find the possible values of \(|\vec{p} + \vec{q} + \vec{r}|\). For example, if we take: - \(k_1 = 3\) - \(k_2 = 2\) - \(k_3 = 1\) Then: \[ |\vec{p} + \vec{q} + \vec{r}| = |(3 - 1)\vec{a} + (2 - 1)\vec{b}| = |2\vec{a} + 1\vec{b}| \] This will yield a specific magnitude based on the values of \(|\vec{a}|\) and \(|\vec{b}|\). ### Conclusion Through various combinations, we find that the possible values of \(|\vec{p} + \vec{q} + \vec{r}|\) can yield certain results. After testing the options provided, we conclude that the value can be: \[ \text{Option 3: } \sqrt{3} \]

To solve the problem step by step, we start with the given information about the vectors. ### Step 1: Understand the Given Vectors We have three coplanar vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) such that: \[ \vec{a} + \vec{b} + \vec{c} = 0 \] This implies that \(\vec{c} = -(\vec{a} + \vec{b})\). ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise REASONING TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|40 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to