Home
Class 12
MATHS
If non-zero vectors a annd b are equally...

If non-zero vectors a annd b are equally inclined to coplanar vector c, then c can be

A

`(|veca|)/(|veca|+2|vecb|)veca + (|vecb|)/(|veca| + |vecb|) vecb`

B

`(|vecb|)/(|veca| + |vecb|) veca + (|veca|)/(|veca|+ |vecb|) vecb`

C

`(|veca|)/(|veca|+2|vecb|)veca + (|vecb|)/(|veca|+ 2|vecb|)vecb`

D

`(|vecb|)/(2|veca| + |vecb|) veca + (|veca|)/(2|veca|+ |vecb|) vecb`

Text Solution

Verified by Experts

The correct Answer is:
B, D

Since `veca and vecb` are equally inclined to `vecc, vecc` must be of the form `t((veca )/(|veca|)+ (vecb)/(|vecb|))`.
Now `(|vecb|)/(|veca | + |vecb|) veca + (|veca|)/(|veca| + |vecb|) vecb`
`" " = (|veca||vecb|)/(|veca| + |vecb|) ((veca)/(|veca|)+ (vecb)/(|vecb|))`
Also, `(|vecb|)/(2|veca|+ |vecb|) veca + (|veca|)/(2|veca|+|vecb|) vecb`
`" "= (|veca||vecb|)/(2|veca|+ |vecb|)((veca)/(|veca|)+ (vecb)/(|vecb|))`
Other two vectors cannot be written in the form
`t((veca)/(|veca|)+ (vecb)/(|vecb|))`.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise REASONING TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|40 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

If non-zero vectors veca and vecb are equally inclined to coplanar vector vecc , then vecc can be

If non-zero vectors vec a and vec b are equally inclined to coplanar vector vec c , then vec c can be a. (| vec a|)/(| vec a|+2| vec b|)a+(| vec b|)/(| vec a|+| vec b|) vec b b. (| vec b|)/(| vec a|+| vec b|)a+(| vec a|)/(| vec a|+| vec b|) vec b c. (| vec a|)/(| vec a|+2| vec b|)a+(| vec b|)/(| vec a|+2| vec b|) vec b d. (| vec b|)/(2| vec a|+| vec b|)a+(| vec a|)/(2| vec a|+| vec b|) vec b

If a and b are two non-zero and non-collinear vectors then a+b and a-b are

If vectors veca and vecb are non collinear then veca/(|veca|)+vecb/(|vecb|) is (A) a unit vector (B) in the plane of veca and vecb (C) equally inclined to veca and vecb (D) perpendicular to veca xx vecb

vec a , vec ba n d vec c are three non-coplanar ,non-zero vectors and vec r is any vector in space, then ( veca × vecb )×( vecr × vecc )+( vecb × vecc )×( vecr × veca )+( vecc × veca )×( vecr × vecb ) is equal to

If vec a , vec ba n d vec c are three non-zero non-coplanar vectors, then the value of (veca.veca)vecb×vecc+(veca.vecb)vecc×veca+(veca.vecc)veca×vecb.

Let a , b and c be non-coplanar unit vectors equally inclined to one another at an acute angle θ then [ a b c ] in terms of θ is equal to :

Let a, b and c be non-zero vectors and |a|=1 and r is a non-zero vector such that r times a=b and r*a=1 , then

Given three vectors veca, vecb and vecc are non-zero and non-coplanar vectors. Then which of the following are coplanar.

Let a,b,c are three vectors of which every pair is non-collinear, if the vectors a+b and b+c are collinear with c annd a respectively, then find a+b+c.