Home
Class 12
MATHS
If A(-4,0,3)a n dB(14 ,2,-5), then which...

If `A(-4,0,3)a n dB(14 ,2,-5),` then which one of the following points lie on the bisector of the angle between ` vec O Aa n d vec O B(O` is the origin of reference )? a. `(2,2,4)` b. `(2, 11 ,5)` c. `(-3,-3,-6)` d. `(1,1,2)`

A

`(2, 2, 4)`

B

`(2, 11, 5)`

C

`(-3, -3, -6)`

D

`(1, 1, 2)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine which points lie on the bisector of the angle between the vectors \( \vec{OA} \) and \( \vec{OB} \), we will follow these steps: ### Step 1: Define the Points and Vectors Given: - Point \( A(-4, 0, 3) \) - Point \( B(14, 2, -5) \) - Origin \( O(0, 0, 0) \) We can define the vectors: - \( \vec{OA} = A - O = (-4, 0, 3) - (0, 0, 0) = -4\hat{i} + 0\hat{j} + 3\hat{k} \) - \( \vec{OB} = B - O = (14, 2, -5) - (0, 0, 0) = 14\hat{i} + 2\hat{j} - 5\hat{k} \) ### Step 2: Calculate the Magnitudes of the Vectors - Magnitude of \( \vec{OA} \): \[ |\vec{OA}| = \sqrt{(-4)^2 + 0^2 + 3^2} = \sqrt{16 + 0 + 9} = \sqrt{25} = 5 \] - Magnitude of \( \vec{OB} \): \[ |\vec{OB}| = \sqrt{(14)^2 + (2)^2 + (-5)^2} = \sqrt{196 + 4 + 25} = \sqrt{225} = 15 \] ### Step 3: Calculate the Unit Vectors - Unit vector \( \hat{OA} \): \[ \hat{OA} = \frac{\vec{OA}}{|\vec{OA}|} = \frac{-4\hat{i} + 0\hat{j} + 3\hat{k}}{5} = -\frac{4}{5}\hat{i} + 0\hat{j} + \frac{3}{5}\hat{k} \] - Unit vector \( \hat{OB} \): \[ \hat{OB} = \frac{\vec{OB}}{|\vec{OB}|} = \frac{14\hat{i} + 2\hat{j} - 5\hat{k}}{15} = \frac{14}{15}\hat{i} + \frac{2}{15}\hat{j} - \frac{5}{15}\hat{k} \] ### Step 4: Find the Angle Bisector The angle bisector can be represented as: \[ \vec{R} = k(\hat{OA} + \hat{OB}) \] for some scalar \( k \). Calculating \( \hat{OA} + \hat{OB} \): \[ \hat{OA} + \hat{OB} = \left(-\frac{4}{5} + \frac{14}{15}\right)\hat{i} + \left(0 + \frac{2}{15}\right)\hat{j} + \left(\frac{3}{5} - \frac{5}{15}\right)\hat{k} \] Calculating each component: - For \( \hat{i} \): \[ -\frac{4}{5} + \frac{14}{15} = -\frac{12}{15} + \frac{14}{15} = \frac{2}{15} \] - For \( \hat{j} \): \[ 0 + \frac{2}{15} = \frac{2}{15} \] - For \( \hat{k} \): \[ \frac{3}{5} - \frac{5}{15} = \frac{9}{15} - \frac{5}{15} = \frac{4}{15} \] Thus, the angle bisector vector is: \[ \vec{R} = k\left(\frac{2}{15}\hat{i} + \frac{2}{15}\hat{j} + \frac{4}{15}\hat{k}\right) \] ### Step 5: Check Each Point We will check if each of the given points lies on the angle bisector by verifying if the ratios of their components match those of \( \vec{R} \). 1. **Point (2, 2, 4)**: - Ratios: \( \frac{2}{15} : \frac{2}{15} : \frac{4}{15} \) → \( 1 : 1 : 2 \) (Correct) 2. **Point (2, 11, 5)**: - Ratios: \( \frac{2}{15} : \frac{11}{15} : \frac{10}{15} \) → \( 2 : 11 : 10 \) (Incorrect) 3. **Point (-3, -3, -6)**: - Ratios: \( \frac{-3}{15} : \frac{-3}{15} : \frac{-12}{15} \) → \( -1 : -1 : -4 \) (Correct) 4. **Point (1, 1, 2)**: - Ratios: \( \frac{1}{15} : \frac{1}{15} : \frac{4}{15} \) → \( 1 : 1 : 4 \) (Incorrect) ### Final Answer The points that lie on the bisector of the angle between \( \vec{OA} \) and \( \vec{OB} \) are: - (2, 2, 4) - (-3, -3, -6)

To determine which points lie on the bisector of the angle between the vectors \( \vec{OA} \) and \( \vec{OB} \), we will follow these steps: ### Step 1: Define the Points and Vectors Given: - Point \( A(-4, 0, 3) \) - Point \( B(14, 2, -5) \) - Origin \( O(0, 0, 0) \) ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise REASONING TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|40 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

If A(-4,0,3) and B(14 ,2,-5), then which one of the following points lie on the bisector of the angle between vec O A and vec O B(O is the origin of reference )? a. (2,2,4) b. (2, 11 ,5) c. (-3,-3,-6) d. (1,1,2)

If | vec a+ vec b|<| vec a- vec b|, then the angle between vec aa n d vec b can lie in the interval a. (pi//2,pi//2) b. (0,pi) c. (pi//2,3pi//2) d. (0,2pi)

If A(-2,1),B(2,3)a n dC(-2,-4) are three points, find the angle between B Aa n dB Cdot

If A(-2,1),B(2,3)a n dC(-2,-4) are three points, find the angle between B Aa n dB Cdot

What is the angle between vectors vec a\ a n d\ vec b with magnitudes 2 and 3 respectively ? Given vec adot vec b=sqrt(3) .

If 2 vec A C = 3 vec C B , then prove that 2 vec O A =3 vec C B then prove that 2 vec O A + 3 vec O B =5 vec O C where O is the origin.

If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 hat k ,\ find the angle between vec a\ a n d\ vec bdot

If vec a\ a n d\ vec b are two vectors such that | vec axx vec b|=3\ a n d\ vec adot vec b=1, find the angle between vec a\ a n d\ vec b .

Find the angle between two vectors vec a\ a n d\ vec b with magnitudes 1\ a n d\ 2 respectively and when | vec axx vec b|=sqrt(3)dot

Find the angle between two vectors vec aa n d vec b with magnitudes sqrt(3) and 2 respectively and such that vec adot vec b=sqrt(6.)