Home
Class 12
MATHS
In a four-dimensional space where unit...

In a four-dimensional space where unit vectors along the axes are ` hat i , hat j , hat k` and `hat l`, and `vec a_1, vec a_2, vec a_3, vec a_4` are four non-zero vectors such that no vector can be expressed as a linear combination of others and `(lambda-1)( vec a_1- vec a_2)+mu( vec a_2+ vec a_3)+gamma( vec a_3+ vec a_4-2 vec a_2)+ vec a_3+delta vec a_4=0,` then

A

`lamda =1`

B

`mu = -2//3`

C

`gamma = 2//3`

D

`delta = 1//3`

Text Solution

Verified by Experts

The correct Answer is:
A, B, D

`(lamda -1) (veca_1 - veca_2) + mu(veca_2 + veca_3)+ gamma (veca_3 + veca_4- 2veca_2) + veca_3 + deltaveca_4 = vec0`
i.e., `(lamda -1) veca_1 + (1-lamda +mu- 2gamma)veca_2 + (mu + gamma +1)veca_3 + ( gamma + delta) veca_4=vec0`
Since `veca_1, veca_2, veca_3 and veca_4` are linearly inependent, we have
`lamda-1 =0, 1-lamda + mu - 2gamma =0, mu+gamma +1=0 and gamma +delta =0`
i.e., `lamda =1, mu=2gamma, mu +gamma+1 =0, gamma +delta =0`
Hence, `lamda =1, mu = - (2)/(3), gamma = - (1)/(3), delta = (1)/(3)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise REASONING TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|40 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

The unit vector along vec(A)= 2 hat i + 3 hat j is :

If vec a= hat i+ hat j+ hat k , vec c= hat j- hat k , vec adot vec b=5 and vec ax vec b= vec c , then vec b is equal to

Show that the vectors a, b, c given by vec a= hat i+2 hat j+3 hat k , vec b=2 hat i+ hat j+3 hat ka n d vec c= hat i+ hat j+ hat k are non-coplanar. Express vector vec d=2 hat i-3 hat k as a liner combination of the vectors vec a , vec b ,a n d vec c .

If vec a= hat i+2 hat j , vec b= hat j+2 hat k ,\ write a unitvector along the vector 3 vec a-2 vec bdot

vec(P)+vec(Q) is a unit vector along x-axis. If vec(P)= hat(i)-hat(j)+hat(k) , then what is vec(Q) ?

If vec a= hat i+ hat j+ hat k and vec b= hat i-2 hat j+ hat k , then find vector vec c such that vec a . vec c=2 and vec axx vec c= vec bdot

Write the condition for the lines vec r= vec a_1+lambda vec b_1 a n d\ vec r= vec a_2+mu vec b_2dot\ to be intersecting.

If vec a.hat i= vec a.( hat i+ hat j)= vec a.( hat i+ hat j+ hat k) , then find the unit vector vec a

If vec a= hat i+ hat j+ hat ka n d vec b= hat i-2 hat j+ hat k , then find vector vec c such that vec adot vec c=2a n d vec axx vec c= vec bdot

Given three vectors vec a=6 hat i-3 hat j , vec b=2 hat i-6 hat ja n d vec c=-2 hat i+21 hat j such that vecalpha= vec a+ vec b+ vec c Then the resolution of the vector vecalpha into components with respect to vec aa n d vec b is given by a. 3 vec a-2 vec b b. 3 vec b-2 vec a c. 2 vec a-3 vec b d. vec a-2 vec b