Home
Class 12
MATHS
Let ABC be a triangle, the position vect...

Let ABC be a triangle, the position vectors of whose vertices are respectively `7 hatj + 10 hatk , -hati + 6 hat j + 6 hatk and -4 hati + 9 hatj + 6 hat k . " Then, " Delta ABC ` is

A

isosceles

B

equilateral

C

right angled

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the area of triangle ABC given the position vectors of its vertices A, B, and C. The position vectors are: - A = \( 7\hat{j} + 10\hat{k} \) - B = \( -\hat{i} + 6\hat{j} + 6\hat{k} \) - C = \( -4\hat{i} + 9\hat{j} + 6\hat{k} \) ### Step 1: Find the position vectors of the vertices. The position vectors are already given as: - \( \vec{A} = 0\hat{i} + 7\hat{j} + 10\hat{k} \) - \( \vec{B} = -1\hat{i} + 6\hat{j} + 6\hat{k} \) - \( \vec{C} = -4\hat{i} + 9\hat{j} + 6\hat{k} \) ### Step 2: Calculate the vectors AB and AC. We can find the vectors \( \vec{AB} \) and \( \vec{AC} \) using the position vectors: \[ \vec{AB} = \vec{B} - \vec{A} = (-1\hat{i} + 6\hat{j} + 6\hat{k}) - (0\hat{i} + 7\hat{j} + 10\hat{k}) = -1\hat{i} - 1\hat{j} - 4\hat{k} \] \[ \vec{AC} = \vec{C} - \vec{A} = (-4\hat{i} + 9\hat{j} + 6\hat{k}) - (0\hat{i} + 7\hat{j} + 10\hat{k}) = -4\hat{i} + 2\hat{j} - 4\hat{k} \] ### Step 3: Calculate the cross product \( \vec{AB} \times \vec{AC} \). To find the area of triangle ABC, we need the magnitude of the cross product of vectors \( \vec{AB} \) and \( \vec{AC} \): \[ \vec{AB} = -1\hat{i} - 1\hat{j} - 4\hat{k} \] \[ \vec{AC} = -4\hat{i} + 2\hat{j} - 4\hat{k} \] The cross product \( \vec{AB} \times \vec{AC} \) can be calculated using the determinant of a matrix: \[ \vec{AB} \times \vec{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & -1 & -4 \\ -4 & 2 & -4 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} -1 & -4 \\ 2 & -4 \end{vmatrix} - \hat{j} \begin{vmatrix} -1 & -4 \\ -4 & -4 \end{vmatrix} + \hat{k} \begin{vmatrix} -1 & -1 \\ -4 & 2 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \( \hat{i} \): \[ (-1)(-4) - (-4)(2) = 4 + 8 = 12 \] 2. For \( \hat{j} \): \[ (-1)(-4) - (-4)(-4) = 4 - 16 = -12 \] 3. For \( \hat{k} \): \[ (-1)(2) - (-1)(-4) = -2 - 4 = -6 \] Putting it all together: \[ \vec{AB} \times \vec{AC} = 12\hat{i} + 12\hat{j} - 6\hat{k} \] ### Step 4: Calculate the magnitude of the cross product. Now, we find the magnitude of the cross product: \[ |\vec{AB} \times \vec{AC}| = \sqrt{12^2 + 12^2 + (-6)^2} = \sqrt{144 + 144 + 36} = \sqrt{324} = 18 \] ### Step 5: Calculate the area of triangle ABC. The area \( \Delta \) of triangle ABC is given by: \[ \Delta = \frac{1}{2} |\vec{AB} \times \vec{AC}| = \frac{1}{2} \times 18 = 9 \] Thus, the area of triangle ABC is \( \Delta = 9 \).

To solve the problem, we need to find the area of triangle ABC given the position vectors of its vertices A, B, and C. The position vectors are: - A = \( 7\hat{j} + 10\hat{k} \) - B = \( -\hat{i} + 6\hat{j} + 6\hat{k} \) - C = \( -4\hat{i} + 9\hat{j} + 6\hat{k} \) ### Step 1: Find the position vectors of the vertices. ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise REASONING TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|40 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

Let A B C be a triangle, the position vectors of whose vertices are -10 hat i+10 hat k ,- hat i+6 hat j+6 hat k and -4 hat i+9 hat j+6 hat k . Then Delta A B C is a. isosceles b. equilateral c. right angled d. none of these

Let ABC be a triangle the position vectors of whose vertices are respectively hati+2hatj+4hatk, -2hati+2hatj+hatk and 2hati+4hatj-3hatk . Then the /_\ABC is (A) isosceles (B) equilateral (C) righat angled (D) none of these

If the position vectors of the vertices of a triangle of a triangle are 2 hati - hatj + hatk , hati - 3 hatj - 5 hatk and 3 hati -4 hatj - 4 hatk , then the triangle is

Find the vector area of the triangle, the position vectors of whose vertices are hati+hatj+2hatk, 2hati+2hatj-3hatk and 3hati-hatj-hatk

In a triangle ABC , right angled at the vertex A , if the position vectors of A , B and C are respectively 3 hati + hatj-hatk , -hati + 3hatj + phatk and 5 hati + q hatj - 4 hatk , then the point (p,q) lies on a line

In a triangle ABC , right angled at the vertex A , if the position vectors of A , B and C are respectively 3 hati + hatj-hatk , -hati + 3hatj + phatk and 5 hati + q hatj - 4 hatk , then the point (p,q) lies on a line

If the points whose position vectors are 2hati + hatj + hatk , 6hati - hatj + 2 hatk and 14 hati - 5 hatj + p hatk are collinear, then p =

If the position vectors of the vertices A,B and C of a DeltaABC are 7hatj+10k,-hati+6hatj+6hatk and -4hati+9hatj+6hatk , respectively, the triangle is

Consider points A, B, C and D with position vectors 7 hati - 4 hat j + 7 hat k , hati - 6 hat j + 10 hat k , - hati - 3 hatj + 4 hatk and 5 hati - hatj + 5 hatk respectively. Then, ABCD is a

If the position vectors of the vertices of a triangle be 2hati+4hatj-hatk,4hati+5hatj+hatk and 3 hati+6hatj-3hatk , then the triangle is