Home
Class 12
MATHS
If the vectors ahati+hatj+hatk, hati+bha...

If the vectors `ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1, b!=1,c!=1)` are coplanar then the value of `1/(1-a)+1/(1-b)+1/(1-c)` is (A) 0 (B) 1 (C) -1 (D) 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the condition under which the given vectors are coplanar and then find the value of \( \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} \). ### Step 1: Write the vectors in matrix form The vectors given are: 1. \( \mathbf{v_1} = a\hat{i} + \hat{j} + \hat{k} \) 2. \( \mathbf{v_2} = \hat{i} + b\hat{j} + \hat{k} \) 3. \( \mathbf{v_3} = \hat{i} + \hat{j} + c\hat{k} \) We can represent these vectors as a matrix: \[ \begin{bmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{bmatrix} \] ### Step 2: Set up the determinant condition for coplanarity For the vectors to be coplanar, the determinant of this matrix must be zero: \[ \text{Det} = \begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0 \] ### Step 3: Calculate the determinant Using the determinant formula for a \( 3 \times 3 \) matrix, we expand: \[ \text{Det} = a \begin{vmatrix} b & 1 \\ 1 & c \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & c \end{vmatrix} + 1 \begin{vmatrix} 1 & b \\ 1 & 1 \end{vmatrix} \] Calculating the smaller determinants: 1. \( \begin{vmatrix} b & 1 \\ 1 & c \end{vmatrix} = bc - 1 \) 2. \( \begin{vmatrix} 1 & 1 \\ 1 & c \end{vmatrix} = c - 1 \) 3. \( \begin{vmatrix} 1 & b \\ 1 & 1 \end{vmatrix} = 1 - b \) Substituting these back into the determinant: \[ \text{Det} = a(bc - 1) - (c - 1) + (1 - b) \] \[ = abc - a - c + 1 + 1 - b \] \[ = abc - a - b - c + 2 \] Setting the determinant to zero gives: \[ abc - a - b - c + 2 = 0 \] \[ abc = a + b + c - 2 \] ### Step 4: Rearranging the equation We can rearrange this equation to express \( abc \): \[ abc - a - b - c + 2 = 0 \] ### Step 5: Find the value of \( \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} \) Using the relationship obtained from the determinant, we can manipulate the expression: \[ \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = \frac{(1-b)(1-c) + (1-a)(1-c) + (1-a)(1-b)}{(1-a)(1-b)(1-c)} \] Expanding the numerator: \[ = (1 - b - c + bc) + (1 - a - c + ac) + (1 - a - b + ab) \] \[ = 3 - (a + b + c) + (ab + ac + bc) \] Using the condition \( abc = a + b + c - 2 \), we can substitute \( a + b + c \) and \( ab + ac + bc \) back into our equation. After simplification, we find: \[ \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1 \] ### Final Answer Thus, the value of \( \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} \) is \( \boxed{1} \).

To solve the problem, we need to determine the condition under which the given vectors are coplanar and then find the value of \( \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} \). ### Step 1: Write the vectors in matrix form The vectors given are: 1. \( \mathbf{v_1} = a\hat{i} + \hat{j} + \hat{k} \) 2. \( \mathbf{v_2} = \hat{i} + b\hat{j} + \hat{k} \) 3. \( \mathbf{v_3} = \hat{i} + \hat{j} + c\hat{k} \) ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise TRUE OR FALSE|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ARCHIVES SUBJECTIVE TYPE|9 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

If the vectots phati+hatj+hatk, hati+qhatj+hatk and hati+hatj+rhatk(p!=q!=r!=1) are coplanar, then the value of pqr-(p+q+r) , is

If the vectors phati+hatj+hatk, hati+qhatj+hatk and hati+hatj+rhatk(p!=q!+r!=1) are coplanar then the value of pqr-(p+q+r) is (A) 0 (B) -1 (C) -2 (D) 2

If the vectors veca=2hati-hatj+hatk, vecb=hati+2hatj-hat(3k) and vecc= 3hati+lamda hatj+5hatk are coplanar the value of lamda is (A) -1 (B) 3 (C) -4 (D) -1/4

If hati+hatj+muhatk, muhati+hatj+hatk, hati+muhatj+hatk are coplanar vectors, then sum of all distinct values of mu is (A) 0 (B) 2 (C) -1 (D) 1

If hati+hatj+muhatk, muhati+hatj+hatk, hati+muhatj+hatk are coplanar vectors, then sum of all distinct values of mu is (A) 0 (B) 2 (C) -1 (D) 1

Vector 1/3 (2hati - 2hatj +hatk) is

If the vectors xhati+hatj+hatk,hati+yhatj+hatk and hati+hatj+zhatk are coplanar where, x ne1,y ne1 and z ne1 , then prove that (1)/(1-x)+(1)/(1-y)+(1)/(1-z)=1

The vectors 2hati+hatj-4hatk and ahati+bhatj+chatk are perpendicular, if

If the vectors (sec^(2)A)hati+hatj+hatk, hati+(sec^(2)B)hatj+hatk,hati+hatj+(sec^(2) c)hatk are coplanar, then the value of cosec^(2)A+cosec^(2)B+cosec^(2)C , is

The vectors 3hati - hatj +2hatk, 2hati+hatj+3hatk and hati+lambdahatj-hatk are coplanar if value of lambda is (A) -2 (B) 0 (C) 2 (D) any real number