Home
Class 12
MATHS
Let a, b and c be distinct non-negative ...

Let `a, b and c` be distinct non-negative numbers. If vectos `a hati +a hatj +chatk, hati + hatk and chati +chatj+bhatk` are coplanar, then c is

A

the arithmetic mean of a and b

B

the geometric mean of a and b

C

the harmonic mean of a and b

D

equal to zero

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( c \) given that the vectors \( \mathbf{A} = a \hat{i} + a \hat{j} + c \hat{k} \), \( \mathbf{B} = \hat{i} + \hat{k} \), and \( \mathbf{C} = c \hat{i} + c \hat{j} + b \hat{k} \) are coplanar. ### Step-by-Step Solution: 1. **Define the Vectors**: \[ \mathbf{A} = a \hat{i} + a \hat{j} + c \hat{k} \] \[ \mathbf{B} = \hat{i} + 0 \hat{j} + \hat{k} \] \[ \mathbf{C} = c \hat{i} + c \hat{j} + b \hat{k} \] 2. **Set Up the Determinant for Coplanarity**: The vectors are coplanar if the scalar triple product (determinant) of the vectors is zero: \[ \begin{vmatrix} a & a & c \\ 1 & 0 & 1 \\ c & c & b \end{vmatrix} = 0 \] 3. **Calculate the Determinant**: Expanding the determinant: \[ = a \begin{vmatrix} 0 & 1 \\ c & b \end{vmatrix} - a \begin{vmatrix} 1 & 1 \\ c & b \end{vmatrix} + c \begin{vmatrix} 1 & 0 \\ c & c \end{vmatrix} \] Now calculating each of these 2x2 determinants: - First determinant: \[ = 0 \cdot b - 1 \cdot c = -c \] - Second determinant: \[ = 1 \cdot b - 1 \cdot c = b - c \] - Third determinant: \[ = 1 \cdot c - 0 \cdot c = c \] Putting it all together: \[ = a(-c) - a(b - c) + c(c) \] \[ = -ac - ab + ac + c^2 \] \[ = c^2 - ab \] 4. **Set the Determinant to Zero**: For coplanarity, we set the determinant to zero: \[ c^2 - ab = 0 \] \[ c^2 = ab \] 5. **Solve for \( c \)**: Taking the square root of both sides: \[ c = \sqrt{ab} \] ### Conclusion: Thus, the value of \( c \) is \( \sqrt{ab} \).

To solve the problem, we need to determine the value of \( c \) given that the vectors \( \mathbf{A} = a \hat{i} + a \hat{j} + c \hat{k} \), \( \mathbf{B} = \hat{i} + \hat{k} \), and \( \mathbf{C} = c \hat{i} + c \hat{j} + b \hat{k} \) are coplanar. ### Step-by-Step Solution: 1. **Define the Vectors**: \[ \mathbf{A} = a \hat{i} + a \hat{j} + c \hat{k} \] ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise REASONING TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SUBJECTIVE|14 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

Let a,b,c be distinct non-negative numbers. If the vectors ahati+ahatj+chatk, hati+hatk and chati+chatj+bhatk lies in a plane then c is

Let a,b and c be distinct non-negative numbers and the vectors ahati+ahatj+chatk,hati+hatk,chati+chatj+bhatk lie in a plane, then the quadratic equation ax^(2)+2cx+b=0 has

Let a,b and c be distinct non-negative numbers and the vectors ahati+ahatj+chatk,hati+hatk,chati+chatj+bhatk lie in a plane, then the quadratic equation ax^(2)+2cx+b=0 has

The vectors lambdahati + hatj + 2hatk, hati + lambdahatj +hatk, 2hati - hatj + 2hatk are coplanar, if:

If the vectors 4hati+11hatj+mhatk,7hati+2hatj+6hatk and hati+5hatj+4hatk are coplanar, then m is equal to

If the vectors 2hati-hatj+hatk,hati+2hatj-3hatk and 3hati+ahatj+5hatk are coplanar, the prove that a=-4.

If vec a =hati +3hatj , vecb = 2hati -hatj - hatk and vec c =mhati +7 hatj +3hatk are coplanar then find the value of m.

Show that the vectors hati-hatj-hatk,2hati+3hatj+hatk and 7hati+3hatj-4hatk are coplanar.

Vectors 2hati+2hatj-2hatk,5hati+yhatj+hatk and -hati+2hatj+2hatk are coplanar then find the value of y.

The sum of the distinct real values of mu , for which the vectors, mu hati + hatj + hatk, hati + mu hatj + hatk, hati + hatj + muhatk are coplanar, is

CENGAGE ENGLISH-INTRODUCTION TO VECTORS -SINGLE CORRECT ANSWER TYPE
  1. In a trapezium ABCD the vector B vec C = alpha vec(AD). If vec p = A...

    Text Solution

    |

  2. Vectors veca = hati+2hatj+3hatk, vec b = 2hati-hatj+hatk and vecc= 3ha...

    Text Solution

    |

  3. Vectors vec a=-4 hat i+3 hat k ; vec b=14 hat i+2 hat j-5 hat k are l...

    Text Solution

    |

  4. If hati-3hatj+5hatk bisects the angle between hata and -hati+2hatj+2ha...

    Text Solution

    |

  5. If 4hati+ 7hatj+ 8hatk, 2hati+ 3hatj+ 4hatk and 2hati+ 5hatj+7hatk are...

    Text Solution

    |

  6. If vec b is a vector whose initial point divides thejoin of 5 hat i...

    Text Solution

    |

  7. The value of the lambda so that P, Q, R, S on the sides OA, OB, OC and...

    Text Solution

    |

  8. ' I ' is the incentre of triangle A B C whose corresponding sides are ...

    Text Solution

    |

  9. Let x^2+3y^2=3 be the equation of an ellipse in the x-y plane. Aa n dB...

    Text Solution

    |

  10. Locus of the point P, for which vec(OP) represents a vector with direc...

    Text Solution

    |

  11. If vec xa n d vec y are two non-collinear vectors and A B C isa trian...

    Text Solution

    |

  12. A uni-modular tangent vector on the curve x=t^2+2,y=4t-5,z=2t^2-6t=...

    Text Solution

    |

  13. If vec xa n d vec y are two non-collinear vectors and a, b, and c r...

    Text Solution

    |

  14. vec A isa vector with direction cosines cosalpha,cosbetaa n dcosgammad...

    Text Solution

    |

  15. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  16. Let a, b and c be distinct non-negative numbers. If vectos a hati +a h...

    Text Solution

    |

  17. Let veca =veci -veck, vecb = xveci+ vecj + (1-x)veck and vecc =y veci ...

    Text Solution

    |

  18. Let alpha, beta and gamma be distinct real numbers. The points whose ...

    Text Solution

    |

  19. The number of distinct values of lamda, for which the vectors -lamda^(...

    Text Solution

    |

  20. If veca=hati+hatj+hatk, vecb=4hati+3hatj+4hatk and vecc=hati+alphahatj...

    Text Solution

    |