Home
Class 12
MATHS
Let veca =veci -veck, vecb = xveci+ vecj...

Let `veca =veci -veck, vecb = xveci+ vecj + (1-x)veck and vecc =y veci +xvecj + (1+x -y)veck`. Then `veca, vecb and vecc` are non-coplanar for

A

some values of x

B

some values of y

C

no values of x and y

D

for all values of x and y

Text Solution

AI Generated Solution

The correct Answer is:
To determine the conditions under which the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are non-coplanar, we will follow these steps: ### Step 1: Define the Vectors We start with the given vectors: - \(\vec{a} = \vec{i} - \vec{k}\) - \(\vec{b} = x\vec{i} + \vec{j} + (1-x)\vec{k}\) - \(\vec{c} = y\vec{i} + x\vec{j} + (1 + x - y)\vec{k}\) ### Step 2: Write the Coefficients Next, we extract the coefficients of \(\vec{i}\), \(\vec{j}\), and \(\vec{k}\) from each vector: - For \(\vec{a}\): Coefficients are \(1\) (for \(\vec{i}\)), \(0\) (for \(\vec{j}\)), and \(-1\) (for \(\vec{k}\)). - For \(\vec{b}\): Coefficients are \(x\) (for \(\vec{i}\)), \(1\) (for \(\vec{j}\)), and \(1-x\) (for \(\vec{k}\)). - For \(\vec{c}\): Coefficients are \(y\) (for \(\vec{i}\)), \(x\) (for \(\vec{j}\)), and \(1+x-y\) (for \(\vec{k}\)). ### Step 3: Form the Determinant To check for non-coplanarity, we calculate the determinant of the matrix formed by these coefficients: \[ \begin{vmatrix} 1 & 0 & -1 \\ x & 1 & 1-x \\ y & x & 1+x-y \end{vmatrix} \] ### Step 4: Calculate the Determinant We compute the determinant using the formula for a \(3 \times 3\) matrix: \[ D = 1 \cdot \begin{vmatrix} 1 & 1-x \\ x & 1+x-y \end{vmatrix} - 0 + (-1) \cdot \begin{vmatrix} x & 1-x \\ y & x \end{vmatrix} \] Calculating the first \(2 \times 2\) determinant: \[ \begin{vmatrix} 1 & 1-x \\ x & 1+x-y \end{vmatrix} = 1(1+x-y) - (1-x)x = 1 + x - y - x + x^2 = x^2 + 1 - y \] Calculating the second \(2 \times 2\) determinant: \[ \begin{vmatrix} x & 1-x \\ y & x \end{vmatrix} = x \cdot x - (1-x)y = x^2 - y + xy \] Putting it all together: \[ D = (x^2 + 1 - y) - (x^2 - y + xy) = 1 - xy \] ### Step 5: Determine Non-Coplanarity Condition The vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are non-coplanar if the determinant \(D \neq 0\): \[ 1 - xy \neq 0 \implies xy \neq 1 \] ### Conclusion Thus, the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are non-coplanar for the condition: \[ xy \neq 1 \]

To determine the conditions under which the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are non-coplanar, we will follow these steps: ### Step 1: Define the Vectors We start with the given vectors: - \(\vec{a} = \vec{i} - \vec{k}\) - \(\vec{b} = x\vec{i} + \vec{j} + (1-x)\vec{k}\) - \(\vec{c} = y\vec{i} + x\vec{j} + (1 + x - y)\vec{k}\) ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|13 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise REASONING TYPE|11 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SUBJECTIVE|14 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

If veca = 2veci+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)

If veca = 2vecj+3vecj-veck, vecb =-veci+2vecj-4veck and vecc=veci + vecj + veck , then find the value of (veca xx vecb).(vecaxxvecc)

If veca=veci-2vecj+veck, vecb=veci+vecj+veck and vecc=veci+2vecj+veck then show that veca.(vecbxxvecc)=(vecaxxvecb).vecc.

Show that the vectors 2veca-vecb+3vecc, veca+vecb-2vecc and veca+vecb-3vecc are non-coplanar vectors (where veca, vecb, vecc are non-coplanar vectors).

If vecA=2veci+vecj-3veck vecB=veci-2vecj+veck and vecC=-veci+vecj-vec4k find vecAxx(vecBxxvecC)

Let vecr = (veca xx vecb)sinx + (vecb xx vecc)cosy+(vecc xx veca) , where veca,vecb and vecc are non-zero non-coplanar vectors, If vecr is orthogonal to 3veca + 5vecb+2vecc , then the value of sec^(2)y+"cosec"^(2)x+secy" cosec "x is

If vecA=2veci-3vecj+7veck, vecB=veci+2veck and vecC=vecj-veck find vecA.(vecBxxvecC) .

If vecA=2veci+3vecj+4veck and vecB=4veci+3vecj+2veck, find vecAxxvecB .

Show that the vectors veca-2vecb+3vecc,-2veca+3vecb-4vecc and - vecb+2vecc are coplanar vector where veca, vecb, vecc are non coplanar vectors

CENGAGE ENGLISH-INTRODUCTION TO VECTORS -SINGLE CORRECT ANSWER TYPE
  1. In a trapezium ABCD the vector B vec C = alpha vec(AD). If vec p = A...

    Text Solution

    |

  2. Vectors veca = hati+2hatj+3hatk, vec b = 2hati-hatj+hatk and vecc= 3ha...

    Text Solution

    |

  3. Vectors vec a=-4 hat i+3 hat k ; vec b=14 hat i+2 hat j-5 hat k are l...

    Text Solution

    |

  4. If hati-3hatj+5hatk bisects the angle between hata and -hati+2hatj+2ha...

    Text Solution

    |

  5. If 4hati+ 7hatj+ 8hatk, 2hati+ 3hatj+ 4hatk and 2hati+ 5hatj+7hatk are...

    Text Solution

    |

  6. If vec b is a vector whose initial point divides thejoin of 5 hat i...

    Text Solution

    |

  7. The value of the lambda so that P, Q, R, S on the sides OA, OB, OC and...

    Text Solution

    |

  8. ' I ' is the incentre of triangle A B C whose corresponding sides are ...

    Text Solution

    |

  9. Let x^2+3y^2=3 be the equation of an ellipse in the x-y plane. Aa n dB...

    Text Solution

    |

  10. Locus of the point P, for which vec(OP) represents a vector with direc...

    Text Solution

    |

  11. If vec xa n d vec y are two non-collinear vectors and A B C isa trian...

    Text Solution

    |

  12. A uni-modular tangent vector on the curve x=t^2+2,y=4t-5,z=2t^2-6t=...

    Text Solution

    |

  13. If vec xa n d vec y are two non-collinear vectors and a, b, and c r...

    Text Solution

    |

  14. vec A isa vector with direction cosines cosalpha,cosbetaa n dcosgammad...

    Text Solution

    |

  15. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  16. Let a, b and c be distinct non-negative numbers. If vectos a hati +a h...

    Text Solution

    |

  17. Let veca =veci -veck, vecb = xveci+ vecj + (1-x)veck and vecc =y veci ...

    Text Solution

    |

  18. Let alpha, beta and gamma be distinct real numbers. The points whose ...

    Text Solution

    |

  19. The number of distinct values of lamda, for which the vectors -lamda^(...

    Text Solution

    |

  20. If veca=hati+hatj+hatk, vecb=4hati+3hatj+4hatk and vecc=hati+alphahatj...

    Text Solution

    |