Home
Class 12
MATHS
Let O be an interior point of DeltaABC ...

Let O be an interior point of `DeltaABC` such that `bar(OA)+2bar(OB) + 3bar(OC) = 0`. Then the ratio of a `DeltaABC` to area of `DeltaAOC` is

A

2

B

`3/2`

C

3

D

`5/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio of the area of triangle ABC to the area of triangle AOC given that \( \vec{OA} + 2\vec{OB} + 3\vec{OC} = 0 \). ### Step-by-Step Solution: 1. **Understanding the Given Equation**: We have the equation \( \vec{OA} + 2\vec{OB} + 3\vec{OC} = 0 \). This implies that we can express \( \vec{OA} \) in terms of \( \vec{OB} \) and \( \vec{OC} \): \[ \vec{OA} = -2\vec{OB} - 3\vec{OC} \] 2. **Setting Up the Area of Triangle ABC**: The area of triangle ABC can be expressed using the cross product: \[ \text{Area}_{ABC} = \frac{1}{2} |\vec{AB} \times \vec{AC}| \] where \( \vec{AB} = \vec{B} - \vec{A} \) and \( \vec{AC} = \vec{C} - \vec{A} \). 3. **Expressing Vectors**: Substitute \( \vec{A} = \vec{OA} \), \( \vec{B} = \vec{OB} \), and \( \vec{C} = \vec{OC} \): \[ \vec{AB} = \vec{B} - \vec{A} = \vec{OB} - \vec{OA} \] \[ \vec{AC} = \vec{C} - \vec{A} = \vec{OC} - \vec{OA} \] 4. **Calculating Area of Triangle AOC**: The area of triangle AOC can also be expressed using the cross product: \[ \text{Area}_{AOC} = \frac{1}{2} |\vec{OA} \times \vec{OC}| \] 5. **Substituting for \( \vec{OA} \)**: Substitute \( \vec{OA} = -2\vec{OB} - 3\vec{OC} \) into the area formula for triangle AOC: \[ \text{Area}_{AOC} = \frac{1}{2} |(-2\vec{OB} - 3\vec{OC}) \times \vec{OC}| \] 6. **Using the Properties of Cross Product**: The cross product \( \vec{OC} \times \vec{OC} = 0 \), thus: \[ \text{Area}_{AOC} = \frac{1}{2} |(-2\vec{OB}) \times \vec{OC}| \] \[ = \frac{1}{2} \cdot 2 |\vec{OB} \times \vec{OC}| = |\vec{OB} \times \vec{OC}| \] 7. **Finding the Ratio of Areas**: Now, we can find the ratio of the areas: \[ \frac{\text{Area}_{ABC}}{\text{Area}_{AOC}} = \frac{\frac{1}{2} |\vec{AB} \times \vec{AC}|}{|\vec{OB} \times \vec{OC}|} \] 8. **Using the Relationship**: From the equation \( \vec{OA} + 2\vec{OB} + 3\vec{OC} = 0 \), we can deduce that the coefficients (1, 2, 3) represent the relative areas of the triangles formed. Thus, the ratio of the area of triangle ABC to the area of triangle AOC is: \[ \frac{\text{Area}_{ABC}}{\text{Area}_{AOC}} = 3 \] ### Final Answer: The ratio of the area of triangle ABC to the area of triangle AOC is \( 3 \).

To solve the problem, we need to find the ratio of the area of triangle ABC to the area of triangle AOC given that \( \vec{OA} + 2\vec{OB} + 3\vec{OC} = 0 \). ### Step-by-Step Solution: 1. **Understanding the Given Equation**: We have the equation \( \vec{OA} + 2\vec{OB} + 3\vec{OC} = 0 \). This implies that we can express \( \vec{OA} \) in terms of \( \vec{OB} \) and \( \vec{OC} \): \[ \vec{OA} = -2\vec{OB} - 3\vec{OC} ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS TRIPLE PRODUCTS, RECIPROCAL SYSTEM OF VECTORS

    CENGAGE ENGLISH|Exercise DPP 2.4|20 Videos

Similar Questions

Explore conceptually related problems

Let O be an interior point of triangle ABC, such that 2vec(OA)+3vec(OB)+4vec(OC)=0 , then the ratio of the area of DeltaABC to the area of DeltaAOC is

Let O be any point in the interior of DeltaABC , prove that : AB+BC+CA lt 2 (OA+OB+OC)

If bar(XY) = 3 , what is the area of Delta XYZ ?

The resultant of the three vectors bar(OA),bar(OB) and bar(OC) shown in figure :-

bar(QR)=bar(RS) . If the area of Delta RST is (c )/(2) , what is the area of Delta QSP ?

In the given figure, D is the mid-point of BC, E is the mid-point of BD and O is the mid-point of AE. Find the ratio of area of Delta BOE and DeltaABC

Given a cube ABCD A_(1)B_(1)C_(1)D_(1) which lower base ABCD, upper base A_(1)B_(1)C_(1)D_(1) and the lateral edges "AA"_(1), "BB"_(1),"CC"_(1) and "DD"_(1) M and M_(1) are the centres of the forces ABCD and A_(1)B_(1)C_(1)D_(1) respectively. O is a point on the line MM_(2) such that bar(OA) + bar(OB), bar(OC) + bar(OD) = bar(OM) , then bar(OM)=lambda(OM_(1)) is equal to

Evaluate : 2.bar(7)+1.bar(3)

In the figure above, the circle with center O has bar(PQ) tangent to it at P. Find the ratio of the shaded area to the area of the circle .

The three vectors bar(OA), bar(OB) and bar(OC) have the same magnitude R. Then the sum of these vectors have magnitude.

CENGAGE ENGLISH-VECTORS; DEFINITION, GEOMETRY RELATED TO VECTORS-DPP 1.1
  1. A line segment has length 63 and direction ratios are 3, -2, 6. The ...

    Text Solution

    |

  2. If veca, vecb and vecc are position vectors of A,B, and C respectively...

    Text Solution

    |

  3. Let O be an interior point of DeltaABC such that bar(OA)+2bar(OB) + ...

    Text Solution

    |

  4. In a three-dimensional coordinate system, P ,Q ,a n dR are images o...

    Text Solution

    |

  5. ABCDEF is a regular hexagon in the x-y plance with vertices in the ant...

    Text Solution

    |

  6. Let position vectors of point A,B and C of triangle ABC represents be ...

    Text Solution

    |

  7. If D,E and F are the mid-points of the sides BC, CA and AB respectivel...

    Text Solution

    |

  8. If points (1,2,3), (0,-4,3), (2,3,5) and (1,-5,-3) are vertices of tet...

    Text Solution

    |

  9. The unit vector parallel to the resultant of the vectors 2hati+3hatj-h...

    Text Solution

    |

  10. ABCDEF is a regular hexagon. Find the vector vec AB + vec AC + vec AD ...

    Text Solution

    |

  11. If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the ang...

    Text Solution

    |

  12. If sum of two unit vectors is a unit vector; prove that the magnitude ...

    Text Solution

    |

  13. The position vectors of the points A,B, and C are hati+2hatj-hatk, hat...

    Text Solution

    |

  14. Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)...

    Text Solution

    |

  15. If the position vectors of P and Q are hati+2hatj-7hatk and 5hati-3hat...

    Text Solution

    |

  16. The non zero vectors veca,vecb, and vecc are related byi veca=8vecb n...

    Text Solution

    |

  17. The unit vector bisecting vec(OY) and vec(OZ) is

    Text Solution

    |

  18. A unit tangent vector at t=2 on the curve x=t^(2)+2, y=4t-5 and z=2t^(...

    Text Solution

    |

  19. If veca and vecb are position vectors of A and B respectively, then th...

    Text Solution

    |

  20. Let veca=(1,1,-1), vecb=(5,-3,-3) and vecc=(3,-1,2). If vecr is collin...

    Text Solution

    |