Home
Class 12
MATHS
Orthocenter of an equilateral triangle A...

Orthocenter of an equilateral triangle ABC is the origin O. If `vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc`, then `vec(AB)+2vec(BC)+3vec(CA)=`

A

`3vecc`

B

`3veca`

C

`vec0`

D

`3vecb`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( \vec{AB} + 2\vec{BC} + 3\vec{CA} \) given that the orthocenter of triangle \( ABC \) is the origin \( O \) and the vectors from the origin to the vertices are defined as \( \vec{OA} = \vec{a} \), \( \vec{OB} = \vec{b} \), and \( \vec{OC} = \vec{c} \). ### Step-by-Step Solution: 1. **Express the vectors in terms of \( \vec{a}, \vec{b}, \vec{c} \)**: - The vector \( \vec{AB} \) can be expressed as: \[ \vec{AB} = \vec{OB} - \vec{OA} = \vec{b} - \vec{a} \] 2. **Calculate \( \vec{BC} \)**: - The vector \( \vec{BC} \) can be expressed as: \[ \vec{BC} = \vec{OC} - \vec{OB} = \vec{c} - \vec{b} \] 3. **Calculate \( \vec{CA} \)**: - The vector \( \vec{CA} \) can be expressed as: \[ \vec{CA} = \vec{OA} - \vec{OC} = \vec{a} - \vec{c} \] 4. **Substitute these expressions into the original equation**: - Now substitute \( \vec{AB}, \vec{BC}, \vec{CA} \) into the expression \( \vec{AB} + 2\vec{BC} + 3\vec{CA} \): \[ \vec{AB} + 2\vec{BC} + 3\vec{CA} = (\vec{b} - \vec{a}) + 2(\vec{c} - \vec{b}) + 3(\vec{a} - \vec{c}) \] 5. **Distribute and combine like terms**: - Expanding the expression gives: \[ = \vec{b} - \vec{a} + 2\vec{c} - 2\vec{b} + 3\vec{a} - 3\vec{c} \] - Combine the terms: \[ = (-\vec{a} + 3\vec{a}) + (\vec{b} - 2\vec{b}) + (2\vec{c} - 3\vec{c}) \] \[ = 2\vec{a} - \vec{b} - \vec{c} \] 6. **Use the property of the orthocenter**: - Since \( O \) is the orthocenter of triangle \( ABC \), we have: \[ \vec{a} + \vec{b} + \vec{c} = \vec{0} \] - Therefore, \( \vec{c} = -(\vec{a} + \vec{b}) \). 7. **Substituting back into the expression**: - Substitute \( \vec{c} \) into \( 2\vec{a} - \vec{b} - \vec{c} \): \[ = 2\vec{a} - \vec{b} - (-\vec{a} - \vec{b}) \] \[ = 2\vec{a} - \vec{b} + \vec{a} + \vec{b} \] \[ = 3\vec{a} \] ### Final Result: Thus, the final result is: \[ \vec{AB} + 2\vec{BC} + 3\vec{CA} = 3\vec{a} \]

To solve the problem, we need to find the value of the expression \( \vec{AB} + 2\vec{BC} + 3\vec{CA} \) given that the orthocenter of triangle \( ABC \) is the origin \( O \) and the vectors from the origin to the vertices are defined as \( \vec{OA} = \vec{a} \), \( \vec{OB} = \vec{b} \), and \( \vec{OC} = \vec{c} \). ### Step-by-Step Solution: 1. **Express the vectors in terms of \( \vec{a}, \vec{b}, \vec{c} \)**: - The vector \( \vec{AB} \) can be expressed as: \[ \vec{AB} = \vec{OB} - \vec{OA} = \vec{b} - \vec{a} ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS TRIPLE PRODUCTS, RECIPROCAL SYSTEM OF VECTORS

    CENGAGE ENGLISH|Exercise DPP 2.4|20 Videos

Similar Questions

Explore conceptually related problems

If |vec (AO) +vec (OB)| =|vec(BO) + vec(OC)| , then A, B, C form

Assertion ABCDEF is a regular hexagon and vec(AB)=veca,vec(BC)=vecb and vec(CD)=vecc, then vec(EA) is equal to -(vecb+vecc) , Reason: vec(AE)=vec(BD)=vec(BC)+vec(CD) (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Let O, O' and G be the circumcentre, orthocentre and centroid of a Delta ABC and S be any point in the plane of the triangle. Statement -1: vec(O'A) + vec(O'B) + vec(O'C)=2vec(O'O) Statement -2: vec(SA) + vec(SB) + vec(SC) = 3 vec(SG)

Let O be the centre of the regular hexagon ABCDEF then find vec(OA)+vec(OB)+vec(OD)+vec(OC)+vec(OE)+vec(OF)

If ABCDEF is a regular hexagon with vec(AB) = veca and vec(BC)= vecb, then vec(CE) equals

In a triangle OAC, if B is the mid point of side AC and vec O A= vec a ,\ vec O B= vec b ,\ then what is vec O C ?

Prove that 3vec(OD)+vec(DA)+vec(DB)+vec(DC) is equal to vec(OA)+vec(OB)+vec(OC) .

In triangle ABC (Figure), which of the following is not true: (A) vec(AB)+ vec(BC)+ vec(CA)=vec0 (B) vec(AB)+ vec(BC)- vec(AC) =vec0 (C) vec(AB)+ vec(BC)- vec(CA)=vec0 (D) vec(AB)+ vec(CB)+ vec(CA)=vec0

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

CENGAGE ENGLISH-VECTORS; DEFINITION, GEOMETRY RELATED TO VECTORS-DPP 1.1
  1. ABCDEF is a regular hexagon in the x-y plance with vertices in the ant...

    Text Solution

    |

  2. Let position vectors of point A,B and C of triangle ABC represents be ...

    Text Solution

    |

  3. If D,E and F are the mid-points of the sides BC, CA and AB respectivel...

    Text Solution

    |

  4. If points (1,2,3), (0,-4,3), (2,3,5) and (1,-5,-3) are vertices of tet...

    Text Solution

    |

  5. The unit vector parallel to the resultant of the vectors 2hati+3hatj-h...

    Text Solution

    |

  6. ABCDEF is a regular hexagon. Find the vector vec AB + vec AC + vec AD ...

    Text Solution

    |

  7. If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the ang...

    Text Solution

    |

  8. If sum of two unit vectors is a unit vector; prove that the magnitude ...

    Text Solution

    |

  9. The position vectors of the points A,B, and C are hati+2hatj-hatk, hat...

    Text Solution

    |

  10. Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)...

    Text Solution

    |

  11. If the position vectors of P and Q are hati+2hatj-7hatk and 5hati-3hat...

    Text Solution

    |

  12. The non zero vectors veca,vecb, and vecc are related byi veca=8vecb n...

    Text Solution

    |

  13. The unit vector bisecting vec(OY) and vec(OZ) is

    Text Solution

    |

  14. A unit tangent vector at t=2 on the curve x=t^(2)+2, y=4t-5 and z=2t^(...

    Text Solution

    |

  15. If veca and vecb are position vectors of A and B respectively, then th...

    Text Solution

    |

  16. Let veca=(1,1,-1), vecb=(5,-3,-3) and vecc=(3,-1,2). If vecr is collin...

    Text Solution

    |

  17. A line passes through the points whose position vectors are hati+hatj-...

    Text Solution

    |

  18. Three points A,B, and C have position vectors -2veca+3vecb+5vecc, veca...

    Text Solution

    |

  19. Three points A,B, and C have position vectors -2veca+3vecb+5vecc, veca...

    Text Solution

    |

  20. Three points A,B, and C have position vectors -2veca+3vecb+5vecc, veca...

    Text Solution

    |