Home
Class 12
MATHS
Three points A,B, and C have position ve...

Three points A,B, and C have position vectors `-2veca+3vecb+5vecc, veca+2vecb+3vecc` and `7veca-vecc` with reference to an origin O. Answer the following questions?
Which of the following is true?

A

`vec(AC)=2vec(AB)`

B

`vec(AC)=-3vec(AB)`

C

`vec(AC)=3vec(AB)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the position vectors of points A, B, and C, and then calculate the vectors AB and AC to analyze their relationship. ### Step 1: Identify the position vectors The position vectors of points A, B, and C are given as follows: - Position vector of A: \(\vec{A} = -2\vec{a} + 3\vec{b} + 5\vec{c}\) - Position vector of B: \(\vec{B} = \vec{a} + 2\vec{b} + 3\vec{c}\) - Position vector of C: \(\vec{C} = 7\vec{a} - \vec{c}\) ### Step 2: Calculate the vector AB The vector AB is calculated as: \[ \vec{AB} = \vec{B} - \vec{A} \] Substituting the position vectors: \[ \vec{AB} = (\vec{a} + 2\vec{b} + 3\vec{c}) - (-2\vec{a} + 3\vec{b} + 5\vec{c}) \] Simplifying this: \[ \vec{AB} = \vec{a} + 2\vec{b} + 3\vec{c} + 2\vec{a} - 3\vec{b} - 5\vec{c} \] \[ \vec{AB} = (1 + 2)\vec{a} + (2 - 3)\vec{b} + (3 - 5)\vec{c} \] \[ \vec{AB} = 3\vec{a} - \vec{b} - 2\vec{c} \] ### Step 3: Calculate the vector AC The vector AC is calculated as: \[ \vec{AC} = \vec{C} - \vec{A} \] Substituting the position vectors: \[ \vec{AC} = (7\vec{a} - \vec{c}) - (-2\vec{a} + 3\vec{b} + 5\vec{c}) \] Simplifying this: \[ \vec{AC} = 7\vec{a} - \vec{c} + 2\vec{a} - 3\vec{b} - 5\vec{c} \] \[ \vec{AC} = (7 + 2)\vec{a} - 3\vec{b} + (-1 - 5)\vec{c} \] \[ \vec{AC} = 9\vec{a} - 3\vec{b} - 6\vec{c} \] ### Step 4: Establish the relationship between AC and AB Now we can express \(\vec{AC}\) in terms of \(\vec{AB}\): \[ \vec{AC} = 9\vec{a} - 3\vec{b} - 6\vec{c} \] We can factor out 3 from \(\vec{AB}\): \[ \vec{AB} = 3\vec{a} - \vec{b} - 2\vec{c} \] Thus, \[ \vec{AC} = 3(3\vec{a} - \vec{b} - 2\vec{c}) = 3\vec{AB} \] ### Conclusion This implies that the vector AC is three times the vector AB. Therefore, the correct answer is: \[ \vec{AC} = 3\vec{AB} \] ### Final Answer The correct option is **C: AC = 3AB**.

To solve the problem, we need to find the position vectors of points A, B, and C, and then calculate the vectors AB and AC to analyze their relationship. ### Step 1: Identify the position vectors The position vectors of points A, B, and C are given as follows: - Position vector of A: \(\vec{A} = -2\vec{a} + 3\vec{b} + 5\vec{c}\) - Position vector of B: \(\vec{B} = \vec{a} + 2\vec{b} + 3\vec{c}\) - Position vector of C: \(\vec{C} = 7\vec{a} - \vec{c}\) ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS TRIPLE PRODUCTS, RECIPROCAL SYSTEM OF VECTORS

    CENGAGE ENGLISH|Exercise DPP 2.4|20 Videos

Similar Questions

Explore conceptually related problems

Three points A,B, and C have position vectors -2veca+3vecb+5vecc, veca+2vecb+3vecc and 7veca-vecc with reference to an origin O. Answer the following questions? B divided AC in ratio

A, B, C and D have position vectors veca, vecb, vecc and vecd , repectively, such that veca-vecb = 2(vecd-vecc) . Then

Show that the points veca+2vecb+3c,-2veca+3vecb+5vecc and 7veca-vecc are colinear.

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

Show that the three points whose position vectors are veca-2vecb+3vecc, 2veca+3vecb-4vecc, -7vecb+10vecc are collinear

Check whether the following sets of three points are collinear: -2veca+3vecb+5vecc, veca+2vecb+3vecc, 6veca-vecc

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is

For any three vectors veca, vecb, vecc the value of [(veca+vecb,vecb+vecc,vecc+veca)] is

The position vector of three points are 2veca-vecb+3vecc , veca-2vecb+lambdavecc and muveca-5vecb where veca,vecb,vecc are non coplanar vectors. The points are collinear when

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

CENGAGE ENGLISH-VECTORS; DEFINITION, GEOMETRY RELATED TO VECTORS-DPP 1.1
  1. ABCDEF is a regular hexagon in the x-y plance with vertices in the ant...

    Text Solution

    |

  2. Let position vectors of point A,B and C of triangle ABC represents be ...

    Text Solution

    |

  3. If D,E and F are the mid-points of the sides BC, CA and AB respectivel...

    Text Solution

    |

  4. If points (1,2,3), (0,-4,3), (2,3,5) and (1,-5,-3) are vertices of tet...

    Text Solution

    |

  5. The unit vector parallel to the resultant of the vectors 2hati+3hatj-h...

    Text Solution

    |

  6. ABCDEF is a regular hexagon. Find the vector vec AB + vec AC + vec AD ...

    Text Solution

    |

  7. If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the ang...

    Text Solution

    |

  8. If sum of two unit vectors is a unit vector; prove that the magnitude ...

    Text Solution

    |

  9. The position vectors of the points A,B, and C are hati+2hatj-hatk, hat...

    Text Solution

    |

  10. Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)...

    Text Solution

    |

  11. If the position vectors of P and Q are hati+2hatj-7hatk and 5hati-3hat...

    Text Solution

    |

  12. The non zero vectors veca,vecb, and vecc are related byi veca=8vecb n...

    Text Solution

    |

  13. The unit vector bisecting vec(OY) and vec(OZ) is

    Text Solution

    |

  14. A unit tangent vector at t=2 on the curve x=t^(2)+2, y=4t-5 and z=2t^(...

    Text Solution

    |

  15. If veca and vecb are position vectors of A and B respectively, then th...

    Text Solution

    |

  16. Let veca=(1,1,-1), vecb=(5,-3,-3) and vecc=(3,-1,2). If vecr is collin...

    Text Solution

    |

  17. A line passes through the points whose position vectors are hati+hatj-...

    Text Solution

    |

  18. Three points A,B, and C have position vectors -2veca+3vecb+5vecc, veca...

    Text Solution

    |

  19. Three points A,B, and C have position vectors -2veca+3vecb+5vecc, veca...

    Text Solution

    |

  20. Three points A,B, and C have position vectors -2veca+3vecb+5vecc, veca...

    Text Solution

    |