Home
Class 12
MATHS
If veca, vecb,vecc are unit vectors such...

If `veca, vecb,vecc` are unit vectors such that `veca` is perpendicular to the plane of `vecb, vecc` and the angle between `vecb,vecc` is `pi/3`, then `|veca+vecb+vecc|=`

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the vector sum \( \vec{a} + \vec{b} + \vec{c} \) given the conditions about the unit vectors \( \vec{a}, \vec{b}, \) and \( \vec{c} \). ### Step-by-Step Solution: 1. **Understanding the Given Information:** - \( \vec{a}, \vec{b}, \vec{c} \) are unit vectors, which means: \[ |\vec{a}| = 1, \quad |\vec{b}| = 1, \quad |\vec{c}| = 1 \] - \( \vec{a} \) is perpendicular to the plane formed by \( \vec{b} \) and \( \vec{c} \). Therefore: \[ \vec{a} \cdot \vec{b} = 0 \quad \text{and} \quad \vec{a} \cdot \vec{c} = 0 \] - The angle between \( \vec{b} \) and \( \vec{c} \) is \( \frac{\pi}{3} \). 2. **Finding the Dot Product of \( \vec{b} \) and \( \vec{c} \):** - Using the formula for the dot product: \[ \vec{b} \cdot \vec{c} = |\vec{b}| |\vec{c}| \cos\left(\frac{\pi}{3}\right) \] - Since both \( \vec{b} \) and \( \vec{c} \) are unit vectors: \[ \vec{b} \cdot \vec{c} = 1 \cdot 1 \cdot \frac{1}{2} = \frac{1}{2} \] 3. **Calculating the Magnitude of \( \vec{a} + \vec{b} + \vec{c} \):** - We need to find \( |\vec{a} + \vec{b} + \vec{c}|^2 \): \[ |\vec{a} + \vec{b} + \vec{c}|^2 = (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) \] - Expanding this using the distributive property: \[ |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b}) + 2(\vec{b} \cdot \vec{c}) + 2(\vec{c} \cdot \vec{a}) \] - Substituting the known values: \[ = 1^2 + 1^2 + 1^2 + 2(0) + 2\left(\frac{1}{2}\right) + 2(0) \] - This simplifies to: \[ = 1 + 1 + 1 + 0 + 1 + 0 = 4 \] 4. **Finding the Magnitude:** - Now, taking the square root to find \( |\vec{a} + \vec{b} + \vec{c}| \): \[ |\vec{a} + \vec{b} + \vec{c}| = \sqrt{4} = 2 \] ### Final Answer: \[ |\vec{a} + \vec{b} + \vec{c}| = 2 \]

To solve the problem, we need to find the magnitude of the vector sum \( \vec{a} + \vec{b} + \vec{c} \) given the conditions about the unit vectors \( \vec{a}, \vec{b}, \) and \( \vec{c} \). ### Step-by-Step Solution: 1. **Understanding the Given Information:** - \( \vec{a}, \vec{b}, \vec{c} \) are unit vectors, which means: \[ |\vec{a}| = 1, \quad |\vec{b}| = 1, \quad |\vec{c}| = 1 ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Archives|14 Videos
  • ELLIPSE

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|49 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc are unit vectors such that veca is perpendicular to vecb and vecc and |veca+vecb+vecc|=1 then the angle between vecb and vecc is (A) pi/2 (B) pi (C) 0 (D) (2pi)/3

If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.vecc and the angle between vecb and vecc is pi/3 , then find the value of |veca xx vecb -veca xx vecc|

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

Let veca be a unit vector perpendicular to unit vectors vecb and vecc and if the angle between vecb and vecc " is " alpha , " then " vecb xx vecc is

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb and vecc are three vectors, such that |veca|=2, |vecb|=3, |vecc|=4, veca. vecc=0, veca. vecb=0 and the angle between vecb and vecc is (pi)/(3) , then the value of |veca xx (2vecb - 3 vecc)| is equal to

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

If veca,vecb,vecc,vecd are unit vectors such that veca.vecb=1/2 , vecc.vecd=1/2 and angle between veca xx vecb and vecc xx vecd is pi/6 then the value of |[veca \ vecb \ vecd]vecc-[veca \ vecb \ vecc]vecd|=