Home
Class 12
MATHS
A unit vector veca in the plane of vecb=...

A unit vector `veca` in the plane of `vecb=2hati+hatj` and `vecc=hati-hatj+hatk` is such that angle between `veca` and `vecd` is same as angle between `veca` and `vecb` where `vecd=vecj+2veck`. Then `veca` is

A

`(veci+vecj+veck)/sqrt(3)`

B

`(veci-vecj+veck)/sqrt(3)`

C

`(2veci+vecj)/sqrt(5)`

D

`(2veci-vecj)/sqrt(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the unit vector \(\vec{a}\) in the plane of the vectors \(\vec{b}\) and \(\vec{c}\), given the conditions regarding the angles between the vectors. Let's break down the solution step by step. ### Step 1: Identify the vectors We are given: - \(\vec{b} = 2\hat{i} + \hat{j}\) - \(\vec{c} = \hat{i} - \hat{j} + \hat{k}\) - \(\vec{d} = \hat{j} + 2\hat{k}\) ### Step 2: Establish the relationship of the unit vector \(\vec{a}\) Since \(\vec{a}\) lies in the plane of \(\vec{b}\) and \(\vec{c}\), we can express \(\vec{a}\) as a linear combination of \(\vec{b}\) and \(\vec{c}\): \[ \vec{a} = \lambda \vec{b} + \mu \vec{c} \] where \(\lambda\) and \(\mu\) are scalars. ### Step 3: Use the angle condition We know that the angle between \(\vec{a}\) and \(\vec{d}\) is the same as the angle between \(\vec{a}\) and \(\vec{b}\). This gives us the equation: \[ \frac{\vec{a} \cdot \vec{d}}{|\vec{a}| |\vec{d}|} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} \] Since \(|\vec{a}|\) is a unit vector, this simplifies to: \[ \vec{a} \cdot \vec{d} = \frac{|\vec{d}|}{|\vec{b}|} \vec{a} \cdot \vec{b} \] ### Step 4: Calculate the dot products First, we need to calculate \(|\vec{b}|\) and \(|\vec{d}|\): \[ |\vec{b}| = \sqrt{(2^2 + 1^2)} = \sqrt{5} \] \[ |\vec{d}| = \sqrt{(0^2 + 1^2 + 2^2)} = \sqrt{5} \] Now, we compute the dot products: 1. \(\vec{b} \cdot \vec{d} = (2)(0) + (1)(1) + (0)(2) = 1\) 2. \(\vec{c} \cdot \vec{d} = (1)(0) + (-1)(1) + (1)(2) = -1 + 2 = 1\) 3. \(\vec{b} \cdot \vec{b} = 5\) ### Step 5: Substitute into the angle equation Substituting into the angle equation gives: \[ \vec{a} \cdot \vec{d} = \frac{\sqrt{5}}{\sqrt{5}} \vec{a} \cdot \vec{b} \] This simplifies to: \[ \vec{a} \cdot \vec{d} = \vec{a} \cdot \vec{b} \] ### Step 6: Substitute \(\vec{a}\) into the dot products Substituting \(\vec{a} = \lambda \vec{b} + \mu \vec{c}\) into the dot products: \[ (\lambda \vec{b} + \mu \vec{c}) \cdot \vec{d} = (\lambda \vec{b} + \mu \vec{c}) \cdot \vec{b} \] This expands to: \[ \lambda (\vec{b} \cdot \vec{d}) + \mu (\vec{c} \cdot \vec{d}) = \lambda (\vec{b} \cdot \vec{b}) + \mu (\vec{c} \cdot \vec{b}) \] Substituting the values we calculated: \[ \lambda(1) + \mu(1) = \lambda(5) + \mu(1) \] ### Step 7: Solve for \(\lambda\) and \(\mu\) This gives us: \[ \lambda + \mu = 5\lambda + \mu \] Subtracting \(\mu\) from both sides: \[ \lambda = 5\lambda \] This implies: \[ 4\lambda = 0 \implies \lambda = 0 \] ### Step 8: Substitute \(\lambda\) back Substituting \(\lambda = 0\) into the expression for \(\vec{a}\): \[ \vec{a} = 0 \cdot \vec{b} + \mu \vec{c} = \mu \vec{c} \] ### Step 9: Normalize \(\vec{a}\) Since \(\vec{a}\) is a unit vector: \[ |\vec{a}| = |\mu \vec{c}| = |\mu| |\vec{c}| = 1 \] Calculating \(|\vec{c}|\): \[ |\vec{c}| = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3} \] Thus: \[ |\mu| \sqrt{3} = 1 \implies |\mu| = \frac{1}{\sqrt{3}} \] ### Step 10: Final expression for \(\vec{a}\) Choosing \(\mu = \frac{1}{\sqrt{3}}\): \[ \vec{a} = \frac{1}{\sqrt{3}} (\hat{i} - \hat{j} + \hat{k}) \] ### Conclusion Thus, the unit vector \(\vec{a}\) is: \[ \vec{a} = \frac{1}{\sqrt{3}} \hat{i} - \frac{1}{\sqrt{3}} \hat{j} + \frac{1}{\sqrt{3}} \hat{k} \]

To solve the problem, we need to find the unit vector \(\vec{a}\) in the plane of the vectors \(\vec{b}\) and \(\vec{c}\), given the conditions regarding the angles between the vectors. Let's break down the solution step by step. ### Step 1: Identify the vectors We are given: - \(\vec{b} = 2\hat{i} + \hat{j}\) - \(\vec{c} = \hat{i} - \hat{j} + \hat{k}\) - \(\vec{d} = \hat{j} + 2\hat{k}\) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Archives|14 Videos
  • ELLIPSE

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|49 Videos

Similar Questions

Explore conceptually related problems

If vecA=2hati-2hatj-hatk and vecB=hati+hatj , then : (a) Find angle between vecA and vecB .

The angle between vecA = hati + hatj and vecB = hati - hatj is

The angle between vecA = hati + hatj and vecB = hati - hatj is

If |veca|=2,|vecb|=7 and (vecaxxvecb)=3hati+2hatj+6hatk find the angle between veca and vecb

If vecA 2 hati +hatj -hatk, vecB=hati +2hatj +3hatk, vecC=6hati -2hatj-6hatk angle between (vecA+vecB) and vecC will be

If a=4hati+2hatj-hatk and vecb=5hati+2hatj-3hatk find the angle between the vectors veca+vecb and veca-vecb

If veca=2hati-hatj+2hatk and vecb=-hati+hatj-hatk calculate veca+vecb

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=