Home
Class 12
MATHS
In a tetrahedron OABC, the edges are of ...

In a tetrahedron OABC, the edges are of lengths, `|OA|=|BC|=a,|OB|=|AC|=b,|OC|=|AB|=c.` let `G_(1)` and `G_(2)` be the centroids of the triangle ABC and AOC with that `OG_(1) bot BG_(2)`, then the value of `(a^(2)+c^(2))/(b^(2))` is

A

2

B

3

C

6

D

9

Text Solution

Verified by Experts

The correct Answer is:
B

`vec(OG_(1)).vec(BG_(2))=0`
`rArr (a+vecb+vecc)/(3) . (a+vecc-3vecb)/(3)=0`
Now, `|vecc-veca|^(2)=b^(2), |vecc-vecb|=a^(2)` and `|veca-vecb|=c^(2)`.
`therefore 2veca.vecc=a^(2)+c^(2)-b^(2), 2vecb.vecc=b^(2)+c^(2)=a^(2)`,
`2veca.vecb=a^(2)+b^(2)-c^(2)`
Putting in the above result, we get `2a^(2)+2c^(2)-6b^(2)=0`
`rArr (a^(2)+c^(2))/b^(2)=3`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Archives|14 Videos
  • ELLIPSE

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|49 Videos

Similar Questions

Explore conceptually related problems

In a tetrahedron OABC, the edges are of lengths, |OA|=|BC|=a,|OB|=|AC|=b,|OC|=|AB|=c. Let G_1 and G_2 be the centroids of the triangle ABC and AOC such that OG_1 _|_ BG_2, then the value of (a^2+c^2)/b^2 is

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

If origin is the centroid of a triangle ABC having vertices A(a,1,3), B(-2,b,-5) and C(4,7, c) , then the values of a, b, c are

In Delta ABC, a=5, b=4, c=3. G is the centroid of triangle. If R_(1) be the circum radius of triangle GAB then the value of (a)/(65) R_(1)^(2) must be

In a triangle ABC if tan.(A)/(2)tan.(B)/(2)=(1)/(3) and ab = 4, then the value of c can be

ABC is an isosceles triangle with AB = AC = 2a and BC = a . If AD bot BC, find the length of AD .

If G is the centroid of triangle with vertices A(a,0),B(-a,0) and C(b,c) then (AB^(2)+BC^(2)+CA^(2))/(GA^(2)+GB^(2)+GC^(2))=

If G be the centroid of a triangle ABC, prove that, AB^2 + BC^2 + CA^2 = 3(GA^2 + GB^2 + GC^2)

In an isosceles triangle ABC. AB = BC = 10 cm and BC = 18 cm . Find the value of : tan ^(2) C - sec ^(2)B +2

If a, b and c are in H.P., then the value of ((ac+ab-bc)(ab+bc-ac))/(abc)^2 is