Home
Class 12
MATHS
Four vectors veca, vecb, vecc and vecx s...

Four vectors `veca, vecb, vecc` and `vecx` satisfy the relation `(veca.vecx)vecb=vecc+vecx` where `vecb.veca ne 1`. The value of `vecx` in terms of `veca, vecb` and `vecc` is equal to

A

`((veca.vecc)vecb-vecc(veca.vecb-1))/((veca.vecb-1))`

B

`vecc/(veca.vecb-1)`

C

`(2(veca.vecc)vecb+vecc)/(veca.vecb-1)`

D

`(2(veca.vecc)vecc+vecc)/((veca.vecb)-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \( \vec{x} \) in terms of the vectors \( \vec{a}, \vec{b}, \) and \( \vec{c} \) given the relation: \[ (\vec{a} \cdot \vec{x}) \vec{b} = \vec{c} + \vec{x} \] ### Step-by-Step Solution: 1. **Start with the given equation:** \[ (\vec{a} \cdot \vec{x}) \vec{b} = \vec{c} + \vec{x} \] Let's denote this as Equation (1). 2. **Take the dot product of both sides with \( \vec{a} \):** \[ \vec{a} \cdot ((\vec{a} \cdot \vec{x}) \vec{b}) = \vec{a} \cdot \vec{c} + \vec{a} \cdot \vec{x} \] The left-hand side can be simplified using the property of dot products: \[ (\vec{a} \cdot \vec{x})(\vec{a} \cdot \vec{b}) = \vec{a} \cdot \vec{c} + \vec{a} \cdot \vec{x} \] 3. **Rearranging the equation:** \[ (\vec{a} \cdot \vec{x})(\vec{a} \cdot \vec{b}) - \vec{a} \cdot \vec{x} = \vec{a} \cdot \vec{c} \] Factor out \( \vec{a} \cdot \vec{x} \): \[ \vec{a} \cdot \vec{x} \left( \vec{a} \cdot \vec{b} - 1 \right) = \vec{a} \cdot \vec{c} \] 4. **Solve for \( \vec{a} \cdot \vec{x} \):** \[ \vec{a} \cdot \vec{x} = \frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b} - 1} \] 5. **Substituting back into Equation (1):** From Equation (1), we have: \[ \vec{a} \cdot \vec{x} = \frac{\vec{c} + \vec{x}}{\vec{b}} \] Setting the two expressions for \( \vec{a} \cdot \vec{x} \) equal: \[ \frac{\vec{c} + \vec{x}}{\vec{b}} = \frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b} - 1} \] 6. **Cross-multiplying to eliminate the fraction:** \[ (\vec{c} + \vec{x})(\vec{a} \cdot \vec{b} - 1) = \vec{b} \cdot \vec{a} \cdot \vec{c} \] 7. **Expanding and rearranging:** \[ \vec{c}(\vec{a} \cdot \vec{b} - 1) + \vec{x}(\vec{a} \cdot \vec{b} - 1) = \vec{b} \cdot \vec{a} \cdot \vec{c} \] Isolate \( \vec{x} \): \[ \vec{x}(\vec{a} \cdot \vec{b} - 1) = \vec{b} \cdot \vec{a} \cdot \vec{c} - \vec{c}(\vec{a} \cdot \vec{b} - 1) \] 8. **Final expression for \( \vec{x} \):** \[ \vec{x} = \frac{\vec{b} \cdot \vec{a} \cdot \vec{c} - \vec{c}(\vec{a} \cdot \vec{b} - 1)}{\vec{a} \cdot \vec{b} - 1} \]

To solve the problem, we need to find the vector \( \vec{x} \) in terms of the vectors \( \vec{a}, \vec{b}, \) and \( \vec{c} \) given the relation: \[ (\vec{a} \cdot \vec{x}) \vec{b} = \vec{c} + \vec{x} \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Archives|14 Videos
  • ELLIPSE

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|49 Videos

Similar Questions

Explore conceptually related problems

Three vectors vecA, vecB and vecC satisfy the relation vecA. vecB=0 and vecA. vecC=0. The vector vecA is parallel to

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is

For any three vectors veca, vecb, vecc the value of [(veca+vecb,vecb+vecc,vecc+veca)] is

For any three vectors veca,vecb,vecc show that (veca-vecb),(vecb-vecc) (vecc-veca) are coplanar.

If veca,vecb are two unit vectors such that veca+(veca xx vecb)=vecc , where |vecc|=2 , then value of [vecavecbvecc] is

Three vectors veca , vecb and vecc satisfy the condition veca+ vecb+ vecc= vec0 . Evaluate the quantity mu= veca* vecb+vecb* vecc+vecc* veca , if | veca|=3,| vecb|=4 and |vecc|=2 .

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =