Home
Class 12
MATHS
If a,b,c and A,B,C inR-{0} such that aA+...

If a,b,c and A,B,C `in`R-{0} such that `aA+bB+cD+ sqrt((a^(2)+b^(2)+c^(2))(A^(2)+B^(2)+C^(2)))=0`, then value of `(aB)/(bA) +(bC)/(cB) + (cA)/(aC)` is

A

3

B

4

C

5

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ aA + bB + cC + \sqrt{(a^2 + b^2 + c^2)(A^2 + B^2 + C^2)} = 0 \] ### Step 1: Rearranging the equation We can rearrange the equation to isolate the square root term: \[ aA + bB + cC = -\sqrt{(a^2 + b^2 + c^2)(A^2 + B^2 + C^2)} \] ### Step 2: Squaring both sides Next, we square both sides to eliminate the square root: \[ (aA + bB + cC)^2 = (a^2 + b^2 + c^2)(A^2 + B^2 + C^2) \] ### Step 3: Expanding both sides Now we expand both sides. The left side expands to: \[ a^2A^2 + b^2B^2 + c^2C^2 + 2(abAB + acAC + bcBC) \] The right side remains: \[ (a^2 + b^2 + c^2)(A^2 + B^2 + C^2) \] ### Step 4: Setting the expanded forms equal We set the expanded forms equal to each other: \[ a^2A^2 + b^2B^2 + c^2C^2 + 2(abAB + acAC + bcBC) = (a^2 + b^2 + c^2)(A^2 + B^2 + C^2) \] ### Step 5: Analyzing the equality For the equality to hold, we can conclude that: \[ abAB + acAC + bcBC = 0 \] ### Step 6: Finding the value of the expression We need to find the value of: \[ \frac{aB}{bA} + \frac{bC}{cB} + \frac{cA}{aC} \] ### Step 7: Using the equality derived From the equality \( abAB + acAC + bcBC = 0 \), we can deduce that: \[ \frac{aB}{bA} = k, \quad \frac{bC}{cB} = k, \quad \frac{cA}{aC} = k \] This implies that all three fractions are equal to some constant \( k \). ### Step 8: Summing the fractions Thus, we can write: \[ \frac{aB}{bA} + \frac{bC}{cB} + \frac{cA}{aC} = k + k + k = 3k \] ### Step 9: Finding the value of \( k \) Since \( abAB + acAC + bcBC = 0 \) implies that \( k = 1 \) (as each term must balance out to zero), we find: \[ \frac{aB}{bA} + \frac{bC}{cB} + \frac{cA}{aC} = 3 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{3} \]

To solve the problem, we start with the given equation: \[ aA + bB + cC + \sqrt{(a^2 + b^2 + c^2)(A^2 + B^2 + C^2)} = 0 \] ### Step 1: Rearranging the equation We can rearrange the equation to isolate the square root term: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Archives|14 Videos
  • ELLIPSE

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|49 Videos

Similar Questions

Explore conceptually related problems

Let a, b and c be such that a + b + c= 0 and P=a^(2)/(2a^(2)+ bc) + b^(2)/(2b^(2) + ca) + c^(2)/(2c^(2) + ab) is defined. What is the value of P.

If a+b+c=p and ab+bc+ac=q, find a^(2)+b^(2)+c^(2) .

If a , b , c are all non-zero and a+b+c=0 , then (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)= ? .

If a, b, c are in A.P., then prove that : (i) ab+bc=2b^(2) (ii) (a-c)^(2)=4(b^(2)-ac) (iii) a^(2)+c^(2)+4ca=2(ab+bc+ca).

If a + b+ c= p and ab + bc + ca= q , find a^(2) +b^(2) + c^(2)

If a + b + c= 12 and a^(2) + b^(2) + c^(2) = 50 , find ab + bc + ca

If a,b,c are real numbers such that 3(a^(2)+b^(2)+c^(2)+1)=2(a+b+c+ab+bc+ca) , than a,b,c are in

If a+b+c=2, ab+bc+ca=-1 and abc=-2 , find the value of a^(3)+b^(3)+c^(3) .

If a + b- c = 4 and a^(2) + b^(2) + c^(2)= 38 , find ab- bc - ca

if a +b+c=9 and ab+bc+ca=26,find a^(2)+b^(2)+c^(2).