Home
Class 12
MATHS
Let veca,vecb,vecc be three linearly ind...

Let `veca,vecb,vecc` be three linearly independent vectors, then `([veca+2vecb-vecc 2veca+vecb+vecc4veca-vecb+5vecc])/([vecavecbvecc])`

A

0

B

1

C

2

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given by the scalar triple product of the vectors in the numerator divided by the scalar triple product of the vectors in the denominator. Let's break it down step-by-step. ### Step 1: Define the vectors Let: - \(\vec{x} = \vec{a} + 2\vec{b} - \vec{c}\) - \(\vec{y} = 2\vec{a} + \vec{b} + \vec{c}\) - \(\vec{z} = 4\vec{a} - \vec{b} + 5\vec{c}\) ### Step 2: Set up the scalar triple product The scalar triple product \([\vec{x}, \vec{y}, \vec{z}]\) can be represented as the determinant of a matrix formed by these vectors: \[ [\vec{x}, \vec{y}, \vec{z}] = \begin{vmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \\ 4 & -1 & 5 \end{vmatrix} \] ### Step 3: Calculate the determinant Now we will compute the determinant: \[ \begin{vmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \\ 4 & -1 & 5 \end{vmatrix} \] Using the formula for the determinant of a 3x3 matrix: \[ \text{det} = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is: \[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \] In our case: - \(a = 1, b = 2, c = -1\) - \(d = 2, e = 1, f = 1\) - \(g = 4, h = -1, i = 5\) Calculating the determinant: \[ = 1(1 \cdot 5 - 1 \cdot (-1)) - 2(2 \cdot 5 - 1 \cdot 4) + (-1)(2 \cdot (-1) - 1 \cdot 4) \] \[ = 1(5 + 1) - 2(10 - 4) - (2 - 4) \] \[ = 1 \cdot 6 - 2 \cdot 6 + 2 \] \[ = 6 - 12 + 2 = -4 \] ### Step 4: Evaluate the denominator The denominator is the scalar triple product \([\vec{a}, \vec{b}, \vec{c}]\), which is non-zero since \(\vec{a}, \vec{b}, \vec{c}\) are linearly independent vectors. Let's denote this value as \(D\). ### Step 5: Final expression Now, we can express the original question as: \[ \frac{[\vec{x}, \vec{y}, \vec{z}]}{[\vec{a}, \vec{b}, \vec{c}]} = \frac{-4}{D} \] Since \(D\) is non-zero, the final answer is: \[ \frac{-4}{D} \] ### Conclusion The final result of the expression is \(\frac{-4}{D}\), where \(D\) is the scalar triple product of the vectors \(\vec{a}, \vec{b}, \vec{c}\).

To solve the problem, we need to evaluate the expression given by the scalar triple product of the vectors in the numerator divided by the scalar triple product of the vectors in the denominator. Let's break it down step-by-step. ### Step 1: Define the vectors Let: - \(\vec{x} = \vec{a} + 2\vec{b} - \vec{c}\) - \(\vec{y} = 2\vec{a} + \vec{b} + \vec{c}\) - \(\vec{z} = 4\vec{a} - \vec{b} + 5\vec{c}\) ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc are linearly independent vectors, then ((veca+2vecb)xx(2vecb+vecc).(5vecc+veca))/(veca.(vecbxxvecc)) is equal to

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

Let veca,vecb,vecc be three non-zero vectors such that [vecavecbvecc]=|veca||vecb||vecc| then

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 and veca.vecb\'=veca.vecc\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of [veca\' vecb\' vecc\']^-1 is (A) 2[veca vecb vecc] (B) [veca vecb vecc] (C) 3[veca vecb vecc] (D) 0

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then: