Home
Class 12
MATHS
If veca,vecb are two unit vectors such t...

If `veca,vecb` are two unit vectors such that `veca+(veca xx vecb)=vecc`, where `|vecc|=2`, then value of `[vecavecbvecc]` is

A

0

B

`+-1`

C

`-3`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given information and work through the necessary calculations. ### Step 1: Understand the given information We have two unit vectors \(\vec{a}\) and \(\vec{b}\) such that: \[ \vec{a} + (\vec{a} \times \vec{b}) = \vec{c} \] and the magnitude of \(\vec{c}\) is given as: \[ |\vec{c}| = 2 \] ### Step 2: Take the dot product of the equation with \(\vec{a}\) Taking the dot product of both sides of the equation with \(\vec{a}\): \[ \vec{a} \cdot \vec{a} + \vec{a} \cdot (\vec{a} \times \vec{b}) = \vec{a} \cdot \vec{c} \] Since \(\vec{a}\) is a unit vector, \(|\vec{a}|^2 = 1\) and \(\vec{a} \cdot (\vec{a} \times \vec{b}) = 0\) (because \(\vec{a} \times \vec{b}\) is perpendicular to \(\vec{a}\)). Thus, we have: \[ 1 + 0 = \vec{a} \cdot \vec{c} \] This simplifies to: \[ \vec{a} \cdot \vec{c} = 1 \] ### Step 3: Take the dot product of the original equation with \(\vec{c}\) Now, we take the dot product of the original equation with \(\vec{c}\): \[ \vec{c} \cdot \vec{c} = \vec{a} \cdot \vec{c} + (\vec{a} \times \vec{b}) \cdot \vec{c} \] We know that \(|\vec{c}|^2 = 4\) (since \(|\vec{c}| = 2\)), so: \[ 4 = \vec{a} \cdot \vec{c} + (\vec{a} \times \vec{b}) \cdot \vec{c} \] Substituting \(\vec{a} \cdot \vec{c} = 1\): \[ 4 = 1 + (\vec{a} \times \vec{b}) \cdot \vec{c} \] This simplifies to: \[ (\vec{a} \times \vec{b}) \cdot \vec{c} = 3 \] ### Step 4: Conclusion The value of the scalar triple product \([\vec{a}, \vec{b}, \vec{c}]\) is: \[ [\vec{a}, \vec{b}, \vec{c}] = (\vec{a} \times \vec{b}) \cdot \vec{c} = 3 \] Thus, the final answer is: \[ \boxed{3} \]

To solve the problem step by step, we start with the given information and work through the necessary calculations. ### Step 1: Understand the given information We have two unit vectors \(\vec{a}\) and \(\vec{b}\) such that: \[ \vec{a} + (\vec{a} \times \vec{b}) = \vec{c} \] and the magnitude of \(\vec{c}\) is given as: ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca,vecb and vecc are unit vectors such that veca+vecb+vecc=vec0 then the value of veca.vecb+vecb.vecc+vecc.veca is a) 1 b) 0 c) 3 d) -3/2

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

If veca,vecbandvecc are three vectors such that veca+vecb+vecc=0and|veca|=2,|vecb|=3and|vecc|=5 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc + vecc.veca is equal to

If veca,vecb and vecc are unit vectors such that veca + vecb + vecc= 0 , then prove that veca.vecb+vecb.vecc+vecc.veca=-3/2

Let veca,vecb,vecc be three non-zero vectors such that [vecavecbvecc]=|veca||vecb||vecc| then