Home
Class 12
MATHS
Let veca and vecb be unit vectors that a...

Let `veca and vecb` be unit vectors that are perpendicular to each other l. then `[veca+ (veca xx vecb) vecb + (veca xx vecb) veca xx vecb]` will always be equal to

A

1

B

zero

C

`-1`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\vec{a} + (\vec{a} \times \vec{b}) \cdot \vec{b} + (\vec{a} \times \vec{b}) \times \vec{a} \times \vec{b}\), where \(\vec{a}\) and \(\vec{b}\) are unit vectors that are perpendicular to each other, we can follow these steps: ### Step 1: Understanding the given vectors Since \(\vec{a}\) and \(\vec{b}\) are unit vectors and perpendicular, we have: \[ |\vec{a}| = 1, \quad |\vec{b}| = 1, \quad \vec{a} \cdot \vec{b} = 0 \] ### Step 2: Simplifying the expression The expression can be rewritten as: \[ \vec{a} + (\vec{a} \times \vec{b}) \cdot \vec{b} + (\vec{a} \times \vec{b}) \times \vec{a} \times \vec{b} \] ### Step 3: Evaluating \((\vec{a} \times \vec{b}) \cdot \vec{b}\) Since \(\vec{a}\) and \(\vec{b}\) are perpendicular, the cross product \(\vec{a} \times \vec{b}\) is a vector that is perpendicular to both \(\vec{a}\) and \(\vec{b}\). Therefore, the dot product of \((\vec{a} \times \vec{b})\) with \(\vec{b}\) is zero: \[ (\vec{a} \times \vec{b}) \cdot \vec{b} = 0 \] ### Step 4: Simplifying the expression further Now the expression reduces to: \[ \vec{a} + 0 + (\vec{a} \times \vec{b}) \times \vec{a} \times \vec{b} \] This simplifies to: \[ \vec{a} + (\vec{a} \times \vec{b}) \times \vec{b} \] ### Step 5: Evaluating \((\vec{a} \times \vec{b}) \times \vec{b}\) Using the vector triple product identity: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] Let \(\vec{x} = \vec{a} \times \vec{b}\), \(\vec{y} = \vec{b}\), and \(\vec{z} = \vec{b}\): \[ (\vec{a} \times \vec{b}) \times \vec{b} = (\vec{a} \cdot \vec{b}) \vec{b} - (\vec{b} \cdot \vec{b}) \vec{a} \] Since \(\vec{a} \cdot \vec{b} = 0\) and \(|\vec{b}|^2 = 1\): \[ (\vec{a} \times \vec{b}) \times \vec{b} = 0 \cdot \vec{b} - 1 \cdot \vec{a} = -\vec{a} \] ### Step 6: Final expression Now substituting back, we have: \[ \vec{a} - \vec{a} = \vec{0} \] ### Conclusion Thus, the value of the expression \(\vec{a} + (\vec{a} \times \vec{b}) \cdot \vec{b} + (\vec{a} \times \vec{b}) \times \vec{a} \times \vec{b}\) is: \[ \vec{0} \]

To solve the expression \(\vec{a} + (\vec{a} \times \vec{b}) \cdot \vec{b} + (\vec{a} \times \vec{b}) \times \vec{a} \times \vec{b}\), where \(\vec{a}\) and \(\vec{b}\) are unit vectors that are perpendicular to each other, we can follow these steps: ### Step 1: Understanding the given vectors Since \(\vec{a}\) and \(\vec{b}\) are unit vectors and perpendicular, we have: \[ |\vec{a}| = 1, \quad |\vec{b}| = 1, \quad \vec{a} \cdot \vec{b} = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc be three units vectors perpendicular to each other, then |(2veca+3vecb+4vecc).(veca xx vecb+5vecbxxvecc+6vecc xx veca)| is equal to

If vecb and vecc are unit vectors, then for any arbitary vector veca, (((veca xx vecb) + (veca xx vecc))xx (vecb xx vecc)) .(vecb -vecc) is always equal to

veca and vecb are two unit vectors that are mutually perpendicular. A unit vector that if equally inclined to veca, vecb and veca xxvecb is equal to

Let veca and vecb be unit vectors such that |veca+vecb|=sqrt3 . Then find the value of (2veca+5vecb).(3veca+vecb+vecaxxvecb)

What is the value of (vecA + vecB) * ( vecA xx vecB) ?

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca] xx vecb .

If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4vecb are perpendicular to each other, then the angle between veca and vecb is

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

Let veca, vecb and vecc are three unit vectors in a plane such that they are equally inclined to each other, then the value of (veca xx vecb).(vecb xx vecc) + (vecb xx vecc). (vecc xx veca)+(vecc xx veca). (veca xx vecb) can be

If veca,vecb are vectors perpendicular to each other and |veca|=2, |vecb|=3, vecc xx veca=vecb , then the least value of 2|vecc-veca| is