Home
Class 12
MATHS
If V is the volume of the parallelepiped...

If V is the volume of the parallelepiped having three coterminous edges as `veca,vecb` and `vecc`, then the volume of the parallelepiped having three coterminous edges as
`vecalpha = (veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc`,
`vecbeta=(vecb.veca)veca+(vecb.vecb)+(vecb.vecc)vecc`
and `veclambda=(vecc.veca)veca+(vecc.vecb)vecb+(vecc.vecc)vecc` is

A

3V

B

4V

C

`V^(2)`

D

`V^(3)`

Text Solution

Verified by Experts

The correct Answer is:
D

`V=[vecavecbvecc]`
`therefore [vecalphavecbetaveclambda]=|{:(veca.veca, veca.vecb, veca.vecc),(vecb.veca, vecb.vecb, vecb.vecc),(vecc.veca, vecc.vecb, vecc.vecc):}|[vecavecbvecc]`
`=[vecavecbvecc][vecavecbvecc][vecavecbvecc]=V^(3)`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos

Similar Questions

Explore conceptually related problems

The volume of a tetrahedron fomed by the coterminus edges veca , vecb and vecc is 3 . Then the volume of the parallelepiped formed by the coterminus edges veca +vecb, vecb+vecc and vecc + veca is

Show that [veca vecb vecc]\^2=|(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc)|

If the volume of the parallelopiped formed by the vectors veca, vecb, vecc as three coterminous edges is 27 units, then the volume of the parallelopiped having vec(alpha)=veca+2vecb-vecc, vec(beta)=veca-vecb and vec(gamma)=veca-vecb-vecc as three coterminous edges, is

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]

Prove that [veca+vecb,vecb+vecc,vecc+veca]=2[veca vecb vecc]

If vecA=(vecbxxvecc)/([vecb vecc veca]), vecB=(veccxxveca)/([vecc veca vecb]), vecC=(vecaxxvecb)/([veca vecb vecc]) find [vecA vecB vecC]

The vector (veca.vecb)vecc-(veca.vecc)vecb is perpendicular to

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0