Home
Class 12
MATHS
If veca, vecb and vecc are any three vec...

If `veca, vecb` and `vecc` are any three vectors forming a linearly independent system, then `AA theta in R`
`vecp=vecacostheta+vecbsintheta+vecc(cos2theta)`
`vecq=vecacos((2pi)/(3)+theta)+vecbsin((2pi)/(3)+theta) + vecc(cos 2)((2pi)/(3)+theta)`
and `vecr=vecacos(theta-(2pi)/(3))+vecbsin(theta-(2pi)/(3))+vecc cos2(theta-(2pi)/(3))`
then `[vecpvecqvecr]`

A

`[vecavecbvecc]costheta`

B

`[vecavecbvecc]cos2theta`

C

`[vecavecbvecc]cos3theta`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the vectors \(\vec{p}\), \(\vec{q}\), and \(\vec{r}\) given in the question. ### Step 1: Express the vectors We have the following vectors: \[ \vec{p} = \vec{a} \cos \theta + \vec{b} \sin \theta + \vec{c} \cos 2\theta \] \[ \vec{q} = \vec{a} \cos\left(\frac{2\pi}{3} + \theta\right) + \vec{b} \sin\left(\frac{2\pi}{3} + \theta\right) + \vec{c} \cos 2\left(\frac{2\pi}{3} + \theta\right) \] \[ \vec{r} = \vec{a} \cos\left(\theta - \frac{2\pi}{3}\right) + \vec{b} \sin\left(\theta - \frac{2\pi}{3}\right) + \vec{c} \cos 2\left(\theta - \frac{2\pi}{3}\right) \] ### Step 2: Show that \(\vec{p} + \vec{q} + \vec{r} = 0\) We need to show that the sum of these vectors is zero: \[ \vec{p} + \vec{q} + \vec{r} = 0 \] To do this, we can use the angle addition formulas for sine and cosine. 1. For \(\vec{q}\): - \(\cos\left(\frac{2\pi}{3} + \theta\right) = -\frac{1}{2} \cos \theta - \frac{\sqrt{3}}{2} \sin \theta\) - \(\sin\left(\frac{2\pi}{3} + \theta\right) = \frac{\sqrt{3}}{2} \cos \theta - \frac{1}{2} \sin \theta\) - \(\cos 2\left(\frac{2\pi}{3} + \theta\right) = \cos\left(2\theta + \frac{4\pi}{3}\right) = -\cos(2\theta) - \frac{1}{2}\) 2. For \(\vec{r}\): - \(\cos\left(\theta - \frac{2\pi}{3}\right) = -\frac{1}{2} \cos \theta + \frac{\sqrt{3}}{2} \sin \theta\) - \(\sin\left(\theta - \frac{2\pi}{3}\right) = -\frac{\sqrt{3}}{2} \cos \theta - \frac{1}{2} \sin \theta\) - \(\cos 2\left(\theta - \frac{2\pi}{3}\right) = \cos\left(2\theta - \frac{4\pi}{3}\right) = -\cos(2\theta) + \frac{1}{2}\) After substituting these into \(\vec{p} + \vec{q} + \vec{r}\) and simplifying, we find that all terms cancel out, leading to: \[ \vec{p} + \vec{q} + \vec{r} = 0 \] ### Step 3: Conclusion about coplanarity Since \(\vec{p} + \vec{q} + \vec{r} = 0\), it implies that the vectors \(\vec{p}\), \(\vec{q}\), and \(\vec{r}\) are coplanar. ### Step 4: Volume of the parallelepiped The volume of the parallelepiped formed by three vectors is given by the scalar triple product \([\vec{p} \vec{q} \vec{r}]\). Since the vectors are coplanar, the volume is zero: \[ [\vec{p} \vec{q} \vec{r}] = 0 \] ### Final Answer Thus, the final answer is: \[ [\vec{p} \vec{q} \vec{r}] = 0 \]

To solve the problem, we need to analyze the vectors \(\vec{p}\), \(\vec{q}\), and \(\vec{r}\) given in the question. ### Step 1: Express the vectors We have the following vectors: \[ \vec{p} = \vec{a} \cos \theta + \vec{b} \sin \theta + \vec{c} \cos 2\theta \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos

Similar Questions

Explore conceptually related problems

Solve: sin2theta=sin((2pi)/(3)-theta)

Prove that tan(theta+(pi)/(6))+cot(theta-(pi)/(6))=(1)/(sin2theta-sin.(pi)/(3))

Prove that : cos^2 theta+ cos^2 ((2pi)/3 -theta) + cos^2 ((2pi)/3 +theta) = 3/2

Show that 4 sin ((pi)/(3) - theta ) sin ((pi)/(3) + theta) =3-4 sin ^(2) theta

tantheta+tan(pi/3+theta)+tan((2pi)/(3)+theta)=3

The value of the determinant |(sintheta, costheta, sin2theta) , (sin(theta+(2pi)/3), cos(theta+(2pi)/3), sin(2theta+(4pi)/3)) , (sin(theta-(2pi)/3), cos(theta-(2pi)/3), sin(2theta-(4pi)/3))|

The maximum value of 1+sin((pi)/(6)+theta)+2cos((pi)/(3)-theta) for real values of theta is

Let f( theta) = ( cos theta - "cos" (pi)/(8))(cos theta - "cos" (3 pi)/(8))(cos theta - "cos" (5 pi)/(8) )(cos theta - "cos" (7pi)/(8)) then :

Prove that 4sinthetasin(pi/3+theta)sin((2pi)/3+theta)=sin3theta

If xcostheta=ycos(theta+(2pi)/3)=z cos(theta+(4pi)/3) , prove that x y+y z+z x=0.