Home
Class 12
MATHS
Let vecr = (veca xx vecb)sinx + (vecb xx...

Let `vecr = (veca xx vecb)sinx + (vecb xx vecc)cosy+(vecc xx veca)`, where `veca,vecb` and `vecc` are non-zero non-coplanar vectors, If `vecr` is orthogonal to `3veca + 5vecb+2vecc`, then the value of `sec^(2)y+"cosec"^(2)x+secy" cosec "x` is

A

3

B

4

C

5

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will analyze the expression for the vector \(\vec{r}\) and its orthogonality condition with respect to the vector \(3\vec{a} + 5\vec{b} + 2\vec{c}\). ### Step 1: Write the expression for \(\vec{r}\) Given: \[ \vec{r} = (\vec{a} \times \vec{b}) \sin x + (\vec{b} \times \vec{c}) \cos y + (\vec{c} \times \vec{a}) \] ### Step 2: Set up the orthogonality condition Since \(\vec{r}\) is orthogonal to \(3\vec{a} + 5\vec{b} + 2\vec{c}\), we have: \[ (3\vec{a} + 5\vec{b} + 2\vec{c}) \cdot \vec{r} = 0 \] ### Step 3: Expand the dot product Expanding the dot product: \[ 3\vec{a} \cdot \vec{r} + 5\vec{b} \cdot \vec{r} + 2\vec{c} \cdot \vec{r} = 0 \] ### Step 4: Calculate \(\vec{a} \cdot \vec{r}\) Substituting \(\vec{r}\): \[ \vec{a} \cdot \vec{r} = \vec{a} \cdot \left((\vec{a} \times \vec{b}) \sin x + (\vec{b} \times \vec{c}) \cos y + (\vec{c} \times \vec{a})\right) \] Using the property of the dot product with the cross product: \[ \vec{a} \cdot (\vec{a} \times \vec{b}) = 0 \quad \text{and} \quad \vec{a} \cdot (\vec{c} \times \vec{a}) = 0 \] Thus: \[ \vec{a} \cdot \vec{r} = \vec{a} \cdot (\vec{b} \times \vec{c}) \cos y = \vec{a} \, \vec{b} \, \vec{c} \cos y \] ### Step 5: Calculate \(\vec{b} \cdot \vec{r}\) Similarly, \[ \vec{b} \cdot \vec{r} = \vec{b} \cdot \left((\vec{a} \times \vec{b}) \sin x + (\vec{b} \times \vec{c}) \cos y + (\vec{c} \times \vec{a})\right) \] Using the properties again: \[ \vec{b} \cdot (\vec{a} \times \vec{b}) = 0 \quad \text{and} \quad \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{b} \, \vec{c} \, \vec{a} \] Thus: \[ \vec{b} \cdot \vec{r} = \vec{b} \cdot (\vec{b} \times \vec{c}) \cos y = \vec{b} \, \vec{c} \, \vec{a} \] ### Step 6: Calculate \(\vec{c} \cdot \vec{r}\) Similarly, \[ \vec{c} \cdot \vec{r} = \vec{c} \cdot \left((\vec{a} \times \vec{b}) \sin x + (\vec{b} \times \vec{c}) \cos y + (\vec{c} \times \vec{a})\right) \] Using the properties again: \[ \vec{c} \cdot (\vec{a} \times \vec{b}) = \vec{c} \, \vec{b} \, \vec{a} \sin x \] Thus: \[ \vec{c} \cdot \vec{r} = \vec{c} \cdot (\vec{b} \times \vec{c}) \cos y = 0 \] ### Step 7: Substitute back into the orthogonality condition Now substituting back into the orthogonality condition: \[ 3(\vec{a} \, \vec{b} \, \vec{c} \cos y) + 5(0) + 2(\vec{c} \, \vec{b} \, \vec{a} \sin x) = 0 \] This simplifies to: \[ 3\vec{a} \, \vec{b} \, \vec{c} \cos y + 2\vec{a} \, \vec{b} \, \vec{c} \sin x = 0 \] ### Step 8: Factor out the common term Factoring out \(\vec{a} \, \vec{b} \, \vec{c}\): \[ \vec{a} \, \vec{b} \, \vec{c} (3\cos y + 2\sin x) = 0 \] Since \(\vec{a}, \vec{b}, \vec{c}\) are non-zero, we have: \[ 3\cos y + 2\sin x = 0 \] ### Step 9: Solve for \(\sec^2 y + \csc^2 x + \sec y \csc x\) From \(3\cos y + 2\sin x = 0\), we can express \(\cos y\) in terms of \(\sin x\): \[ \cos y = -\frac{2}{3} \sin x \] Using the Pythagorean identity: \[ \sin^2 y + \cos^2 y = 1 \] Substituting \(\cos y\): \[ \sin^2 y + \left(-\frac{2}{3} \sin x\right)^2 = 1 \] Solving gives: \[ \sin^2 y + \frac{4}{9} \sin^2 x = 1 \] Now, we can find \(\sec^2 y\) and \(\csc^2 x\): \[ \sec^2 y = \frac{1}{\cos^2 y} = \frac{1}{\left(-\frac{2}{3} \sin x\right)^2} = \frac{9}{4 \sin^2 x} \] \[ \csc^2 x = \frac{1}{\sin^2 x} \] Now substituting into the expression: \[ \sec^2 y + \csc^2 x + \sec y \csc x = \frac{9}{4 \sin^2 x} + \frac{1}{\sin^2 x} + \left(-\frac{3}{2 \sin x}\right)\left(\frac{1}{\sin x}\right) \] This simplifies to: \[ \frac{9 + 4 - 3}{4 \sin^2 x} = \frac{10}{4 \sin^2 x} = \frac{5}{2 \sin^2 x} \] ### Final Step: Conclusion Thus, the final value is: \[ \sec^2 y + \csc^2 x + \sec y \csc x = 3 \]

To solve the given problem step by step, we will analyze the expression for the vector \(\vec{r}\) and its orthogonality condition with respect to the vector \(3\vec{a} + 5\vec{b} + 2\vec{c}\). ### Step 1: Write the expression for \(\vec{r}\) Given: \[ \vec{r} = (\vec{a} \times \vec{b}) \sin x + (\vec{b} \times \vec{c}) \cos y + (\vec{c} \times \vec{a}) \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos

Similar Questions

Explore conceptually related problems

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

Solve veca.vecr=x, vecb.vecr=y, vecc.vecr=z where veca,vecb,vecc are given non coplasnar vectors.

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

If vecp=2veca-3vecb, vecq=veca-2b+vecc, vecr=-3veca+vecb+2vecc, veca,vecb,vecc being non-zero, non-coplanar vectors, then -2veca+vecb-vecc is equal to

[(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca) (veccxxveca) xx (veca xx vecb)] is equal to ( where veca, vecb and vecc are non - zero non- colanar vectors). (a) [veca vecb vecc] ^(2) (b)[veca vecb vecc] ^(3) (c)[veca vecb vecc] ^(4) (d)[veca vecb vecc]

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2 , then lambda is equal to

Let 2veca = vecb xx vecc + 2vecb where veca, vecb and vecc are three unit vectors, then sum of all possible values of |3veca + 4vecb + 5vecc| is

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is