Home
Class 12
MATHS
If alpha(veca xx vecb)+beta(vecb xx vecc...

If `alpha(veca xx vecb)+beta(vecb xx vecc)+lambda(vecc xx veca)=0`, then

A

`veca,vecb,vecc` are coplanar is all `alpha,beta, lambda ne0`

B

`veca,vecb,vec` are coplanar if any one of `alpha, beta, lambda ne0`

C

`veca,vecb,vecc` are non-coplanar for any `alpha,beta,lambdane0`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \alpha (\vec{a} \times \vec{b}) + \beta (\vec{b} \times \vec{c}) + \lambda (\vec{c} \times \vec{a}) = 0 \), we will follow these steps: ### Step 1: Take the Dot Product with \(\vec{c}\) We start by taking the dot product of the entire equation with the vector \(\vec{c}\): \[ \alpha (\vec{a} \times \vec{b}) \cdot \vec{c} + \beta (\vec{b} \times \vec{c}) \cdot \vec{c} + \lambda (\vec{c} \times \vec{a}) \cdot \vec{c} = 0 \] ### Step 2: Simplify the Dot Products Next, we simplify each term: - The term \((\vec{b} \times \vec{c}) \cdot \vec{c} = 0\) because the cross product is perpendicular to both \(\vec{b}\) and \(\vec{c}\). - Similarly, \((\vec{c} \times \vec{a}) \cdot \vec{c} = 0\) for the same reason. Thus, we have: \[ \alpha (\vec{a} \times \vec{b}) \cdot \vec{c} = 0 \] ### Step 3: Analyze the Result The equation \(\alpha (\vec{a} \times \vec{b}) \cdot \vec{c} = 0\) implies that either: 1. \(\alpha = 0\) 2. \((\vec{a} \times \vec{b}) \cdot \vec{c} = 0\) ### Step 4: Take the Dot Product with \(\vec{b}\) Now, we take the dot product of the original equation with \(\vec{b}\): \[ \alpha (\vec{a} \times \vec{b}) \cdot \vec{b} + \beta (\vec{b} \times \vec{c}) \cdot \vec{b} + \lambda (\vec{c} \times \vec{a}) \cdot \vec{b} = 0 \] Again, \((\vec{a} \times \vec{b}) \cdot \vec{b} = 0\) and \((\vec{b} \times \vec{c}) \cdot \vec{b} = 0\). Thus, we have: \[ \lambda (\vec{c} \times \vec{a}) \cdot \vec{b} = 0 \] ### Step 5: Analyze the Result Again This implies either: 1. \(\lambda = 0\) 2. \((\vec{c} \times \vec{a}) \cdot \vec{b} = 0\) ### Step 6: Take the Dot Product with \(\vec{a}\) Finally, we take the dot product of the original equation with \(\vec{a}\): \[ \alpha (\vec{a} \times \vec{b}) \cdot \vec{a} + \beta (\vec{b} \times \vec{c}) \cdot \vec{a} + \lambda (\vec{c} \times \vec{a}) \cdot \vec{a} = 0 \] Again, \((\vec{a} \times \vec{b}) \cdot \vec{a} = 0\) and \((\vec{c} \times \vec{a}) \cdot \vec{a} = 0\). Thus, we have: \[ \beta (\vec{b} \times \vec{c}) \cdot \vec{a} = 0 \] ### Step 7: Final Analysis This implies either: 1. \(\beta = 0\) 2. \((\vec{b} \times \vec{c}) \cdot \vec{a} = 0\) ### Conclusion From the three conditions derived, we can conclude that either \(\alpha\), \(\beta\), and \(\lambda\) are all zero, or the scalar triple product \( \vec{a} \cdot (\vec{b} \times \vec{c}) = 0\), which indicates that the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are coplanar. Since the problem states that \(\alpha\), \(\beta\), and \(\lambda\) are not all zero, we conclude that: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = 0 \] This means that the volume of the parallelepiped formed by the vectors is zero, indicating that the vectors are coplanar.

To solve the equation \( \alpha (\vec{a} \times \vec{b}) + \beta (\vec{b} \times \vec{c}) + \lambda (\vec{c} \times \vec{a}) = 0 \), we will follow these steps: ### Step 1: Take the Dot Product with \(\vec{c}\) We start by taking the dot product of the entire equation with the vector \(\vec{c}\): \[ \alpha (\vec{a} \times \vec{b}) \cdot \vec{c} + \beta (\vec{b} \times \vec{c}) \cdot \vec{c} + \lambda (\vec{c} \times \vec{a}) \cdot \vec{c} = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos

Similar Questions

Explore conceptually related problems

Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a non -zero , which is perpendicular to (veca + vecb + vecc). Now vecd = (veca xx vecb) sin x + (vecb xx vecc) cos y + 2 (vecc xx veca) . Then

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

Let vecr = (veca xx vecb)sinx + (vecb xx vecc)cosy+(vecc xx veca) , where veca,vecb and vecc are non-zero non-coplanar vectors, If vecr is orthogonal to 3veca + 5vecb+2vecc , then the value of sec^(2)y+"cosec"^(2)x+secy" cosec "x is

if veca=hati+hatj+2hatk, vecb=hati+2hatj+2hatk and |vecc|=1 Such that [veca xx vecb vecb xx vecc vecc xx veca] has maximum value, then the value of |(veca xx vecb) xx vecc|^(2) is (a) 0 (b) 1 (c) 4/3 (d) none of these

If the volume of the parallelepiped formed by the vectors veca xx vecb, vecb xx vecc and vecc xx veca is 36 cubic units, then the volume (in cubic units) of the tetrahedron formed by the vectors veca+vecb, vecb+vecc and vecc + veca is equal to

If vecaxxvecb=vecc,vecb xx vecc=veca, where vecc != vec0, then

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2 , then lambda is equal to

If vec a,vec b , vec c are unit vectors such that veca + vec b+ vecc = 0 and lambda = veca.vecb + vecb.vecc+vecc.veca and d = veca xx vecb + vecb xx vecc + vecc xx veca , then (lambda,vecd) is