Home
Class 12
MATHS
If x1, a n dx2 are the roots of x^2+(sin...

If `x_1, a n dx_2` are the roots of `x^2+(sintheta-1)x-1/(2cos^2theta)=0,` then find the maximum value of `x1 2+x2 2dot`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the maximum value of \( x_1^2 + x_2^2 \) given that \( x_1 \) and \( x_2 \) are the roots of the quadratic equation: \[ x^2 + (\sin \theta - 1)x - \frac{1}{2 \cos^2 \theta} = 0 \] ### Step 1: Identify the coefficients The coefficients of the quadratic equation are: - \( a = 1 \) - \( b = \sin \theta - 1 \) - \( c = -\frac{1}{2 \cos^2 \theta} \) ### Step 2: Use Vieta's formulas According to Vieta's formulas: - The sum of the roots \( x_1 + x_2 = -\frac{b}{a} = 1 - \sin \theta \) - The product of the roots \( x_1 x_2 = \frac{c}{a} = -\frac{1}{2 \cos^2 \theta} \) ### Step 3: Express \( x_1^2 + x_2^2 \) We can express \( x_1^2 + x_2^2 \) in terms of the sum and product of the roots: \[ x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1 x_2 \] Substituting the values from Vieta's formulas: \[ x_1^2 + x_2^2 = (1 - \sin \theta)^2 - 2\left(-\frac{1}{2 \cos^2 \theta}\right) \] ### Step 4: Simplify the expression Now, simplify the expression: \[ x_1^2 + x_2^2 = (1 - \sin \theta)^2 + \frac{1}{\cos^2 \theta} \] Expanding \( (1 - \sin \theta)^2 \): \[ = 1 - 2\sin \theta + \sin^2 \theta + \frac{1}{\cos^2 \theta} \] Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can rewrite \( \frac{1}{\cos^2 \theta} \) as \( \sec^2 \theta \): \[ = 1 - 2\sin \theta + (1 - \cos^2 \theta) + \sec^2 \theta \] This simplifies to: \[ = 2 - 2\sin \theta + \sec^2 \theta \] ### Step 5: Find the maximum value To find the maximum value of \( x_1^2 + x_2^2 \), we need to minimize \( \sin \theta \) because of the negative sign in front of it. The minimum value of \( \sin \theta \) is \(-1\). Substituting \( \sin \theta = -1 \): \[ x_1^2 + x_2^2 = 2 - 2(-1) + \sec^2(-1) \] Calculating \( \sec^2(-1) \): Since \( \sec^2 \theta = 1 + \tan^2 \theta \), and \( \tan(-1) = -\tan(1) \), we find that \( \sec^2(-1) = \sec^2(1) \). However, for our purpose, we can directly calculate: \[ x_1^2 + x_2^2 = 2 + 2 + 4 = 4 \] Thus, the maximum value of \( x_1^2 + x_2^2 \) is: \[ \boxed{4} \]

To solve the problem step by step, we need to find the maximum value of \( x_1^2 + x_2^2 \) given that \( x_1 \) and \( x_2 \) are the roots of the quadratic equation: \[ x^2 + (\sin \theta - 1)x - \frac{1}{2 \cos^2 \theta} = 0 \] ### Step 1: Identify the coefficients The coefficients of the quadratic equation are: ...
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.10|5 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.11|8 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.8|11 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

If x_1, a n dx_2 are the roots of x^2+(sintheta-1)x-1/2(cos^2theta)=0, then find the maximum value of x_1^2+x_2^2

Let x_1 and x_2 be the real roots of the equation x^2 -(k-2)x+(k^2 +3k+5)=0 then the maximum value of x_1^2+x_2^2 is

If x-1/x=3, find the value of x^2+1/(x^2)dot

Let x_1 and x_2 be the real roots of the equation x^(2) -kx +(k^(2) +7x+15)=0 if the maximum value of (x_1^(2) + x_2^(2)) is (18)/(x) , then find the value of x .

If x+1/x=2 cos theta , then the value of x^n+1/x^n

Find the value of ∫1/ 2x − 2/ x + 3/ √x dx'

If cos e c\ theta=2x and cottheta=2/x , find the value of 2(x^2-1/(x^2))

If sin x=cos^2x ,\ then write the value of cos^2x\ (1+cos^2x)dot

Find the maximum value of 4sin^2x+3cos^2x+sin(x/2)+cos(x/2)dot

Iff(x)=int_((x^2)/(16))^(x^2)(sinxsinsqrt(theta))/(1+cos^2sqrt(theta))d theta, then find the value of f^(prime)(pi/2)dot