Home
Class 12
MATHS
If alphaa n dbeta are the roots of x^2-a...

If `alphaa n dbeta` are the roots of `x^2-a(x-1)+b=0` then find the value of `1//(alpha^2-aalpha)+1//(beta^2-beta)+2//a+bdot`

Text Solution

Verified by Experts

The correct Answer is:
Zero

Let `alpha, beta ` be the roots of the equation ` x^(2) - a (x - 1) + b = 0` . Then
` alpha^(2) a alpha + a + b = 0 and beta^(2) - a beta + a + b = 0`
`therefore alpha ^(2) - a alpha = beta^(2) - abeta = - a- b`
`rArr (1)/(a^(2) - alpha ) + (1)/(beta^(2) - a beta) + (2)/(a + b ) = 0` .
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.10|5 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.11|8 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.8|11 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta be the roots of x^(2)-a(x-1)+b=0 , then the value of (1)/(alpha^(2)-a alpha)+(1)/(beta^(2)-a beta)+(2)/(a+b) is

If alpha and beta are zeroes of 8x^(2)-6x+1 , then find the value of (1)/(alpha)+(1)/(beta) .

If alpha and beta are the roots of 2x^(2) + 5x - 4 = 0 then find the value of (alpha)/(beta) + (beta)/(alpha) .

If alphaa n dbeta are roots of equation x^2-7x+1=0, then the value of 1/((alpha-7)^2)+1/((beta-7)^2) is 45 47 49 50

If alpha and beta are the roots of x^2 - p (x+1) - c = 0 , then the value of (alpha^2 + 2alpha+1)/(alpha^2 +2 alpha + c) + (beta^2 + 2beta + 1)/(beta^2 + 2beta + c)

If alpha and beta are the roots of x^2 - p (x+1) - c = 0 , then the value of (alpha^2 + 2alpha+1)/(alpha^2 +2 alpha + c) + (beta^2 + 2beta + 1)/(beta^2 + 2beta + c)

If alpha , beta are the roots of x^2 +x+1=0 then alpha beta + beta alpha =

If alpha,betaa n dgamma are roots of 2x^3+x^2-7=0 , then find the value of sum(alpha/beta+beta/alpha) .

If alpha and beta are the roots of the equation x^2+4x + 1=0(alpha > beta) then find the value of 1/(alpha)^2 + 1/(beta)^2

If alpha and beta are the roots of the equation x^2 + 5x-49=0 , then find the value of cot(cot^-1 alpha + cot^-1 beta) .