Home
Class 12
MATHS
Prove that for all real values of x and ...

Prove that for all real values of `x and y ,x^2+2x y+3y^2-6x-2ygeq-11.`

Text Solution

Verified by Experts

The correct Answer is:
` a lt 2`

Let ` x^(2) + 2xy + 3y^(2) - 6x - 2y + 11 ge 0 , AA x, y in `R
or ` x^(2) + (2y - 6) x + 3y^(2) - 2y + 11 ge 0 , AA x in `R
`rArr (2y - 6)^(2) - 4 (3y^(2) - 2y + 11) le 0, AA y in ` R
or `(y - 3)^(2) - (3y^(2) - 2y + 11) le 0, AA y in ` R
or ` 2y^(2) + 4y + 2 ge 0, AA y in `R
`rArr (y + 1)^(2) ge 0, AA y in R` , which is always true .
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.13|9 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type : Exercise|89 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.11|8 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

Find the value of x and y x+2y=2 2x+3y=3

Find the value of x , y 2x+3y=6 3x-2y=4 .

Prove by direct method that for any real number x,y if x = y then x^(2) = y^(2) .

Find the real values of x and y for which (1+i)y^2+(6+i)=(2+i)x

Prove by direct method that for any real numbers x, y if x=y, then x^(2)=y^(2) .

Prove that the centres of the circles x^2+y^2=1 , x^2+y^2+6x-2y-1=0 and x^2+y^2-12x+4y=1 are collinear

Prove that the centres of the circles x^2+y^2=1 , x^2+y^2+6x-2y-1=0 and x^2+y^2-12x+4y=1 are collinear

For all positive values of x and y, the value of ((1+x+x^(2))(1+y+y^(2)))/(xy) ,is

Prove that the radii of the circles x^(2)+y^(2)=1,x^(2)+y^(2)-2x-6y=6andx^(2)+y^(2)-4x-12y=9 are in AP.

Let y=sqrt(((x+1)(x-3))/((x-2))) . Find all the real values of x for which y takes real values.