Home
Class 12
MATHS
If alphaandbeta are the roots of the equ...

If `alphaandbeta` are the roots of the equation `x^(2)-6x+12=0` and the value of `(alpha-2)^(24)-((beta-6)^(8))/(alpha^(8))+1` is `4^(a)`, then the value of a is ______.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions provided in the video transcript. ### Step 1: Identify the roots of the quadratic equation The given equation is: \[ x^2 - 6x + 12 = 0 \] We can find the roots using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -6 \), and \( c = 12 \). Calculating the discriminant: \[ b^2 - 4ac = (-6)^2 - 4 \cdot 1 \cdot 12 = 36 - 48 = -12 \] Since the discriminant is negative, the roots are complex. Now, substituting into the quadratic formula: \[ x = \frac{6 \pm \sqrt{-12}}{2} = \frac{6 \pm 2i\sqrt{3}}{2} = 3 \pm i\sqrt{3} \] Let: \[ \alpha = 3 + i\sqrt{3}, \quad \beta = 3 - i\sqrt{3} \] ### Step 2: Substitute \(\beta\) into the expression We need to evaluate: \[ \frac{(\alpha - 2)^{24} - (\beta - 6)^{8}}{\alpha^{8}} + 1 \] First, calculate \(\alpha - 2\) and \(\beta - 6\): \[ \alpha - 2 = (3 + i\sqrt{3}) - 2 = 1 + i\sqrt{3} \] \[ \beta - 6 = (3 - i\sqrt{3}) - 6 = -3 - i\sqrt{3} \] ### Step 3: Calculate the powers Now we calculate: \[ (\alpha - 2)^{24} = (1 + i\sqrt{3})^{24} \] Using polar form: \[ 1 + i\sqrt{3} = 2 \left( \cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right) \right) \] Thus, \[ (1 + i\sqrt{3})^{24} = 2^{24} \left( \cos\left(8\pi\right) + i\sin\left(8\pi\right) \right) = 2^{24} \cdot 1 = 2^{24} \] Next, calculate \((\beta - 6)^{8}\): \[ \beta - 6 = -3 - i\sqrt{3} = 2 \left( \cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right) \right) \] Thus, \[ (-3 - i\sqrt{3})^{8} = 2^{8} \left( \cos\left(\frac{32\pi}{3}\right) + i\sin\left(\frac{32\pi}{3}\right) \right) = 2^{8} \cdot 1 = 2^{8} \] ### Step 4: Calculate \(\alpha^{8}\) Now, calculate \(\alpha^{8}\): \[ \alpha = 3 + i\sqrt{3} = 2 \left( \cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right) \right) \] Thus, \[ \alpha^{8} = 2^{8} \left( \cos\left(\frac{8\pi}{3}\right) + i\sin\left(\frac{8\pi}{3}\right) \right) = 2^{8} \cdot 1 = 2^{8} \] ### Step 5: Substitute into the main expression Now substituting back into the expression: \[ \frac{2^{24} - 2^{8}}{2^{8}} + 1 = \frac{2^{24} - 2^{8}}{2^{8}} + 1 = 2^{16} - 1 + 1 = 2^{16} \] ### Step 6: Set equal to \(4^a\) We know that: \[ 2^{16} = 4^8 \] Thus, we have: \[ 4^a = 4^8 \implies a = 8 \] ### Final Answer The value of \( a \) is: \[ \boxed{8} \]

To solve the problem step by step, we will follow the instructions provided in the video transcript. ### Step 1: Identify the roots of the quadratic equation The given equation is: \[ x^2 - 6x + 12 = 0 \] We can find the roots using the quadratic formula: \[ ...
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise Archives JEE MAIN (single correct Answer Type )|7 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise JEE ADVANCED (Single Correct Type )|5 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|6 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha,beta are the roots of the equation 8x^2-3x+27=0, then the value of (alpha^2/beta)^(1/3)+(beta^2/alpha)^(1/3) is

If alpha,beta are the roots of the equation x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+alpha^(-2)beta^(2) ?

If alpha and beta are the roots of the equations x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+beta^(2)alpha^(-2)

If alpha and beta are the roots of the quadratic equation x^(2) - 4x - 6 = 0 , find the values of alpha^(2) + beta^(2) .

If alpha and beta are the roots of the equation 2x^(2) - 3x + 4 = 0 , then alpha^(2) + beta^(2) = ____

If alpha, beta are the roots of the equation ax^2 + bx +c=0 then the value of (1+alpha+alpha^2)(1+beta+beta^2) is

If alpha and beta are the roots of the equation x^2+4x + 1=0(alpha > beta) then find the value of 1/(alpha)^2 + 1/(beta)^2

CENGAGE ENGLISH-THEORY OF EQUATIONS-NUMERICAL VALUE TYPE
  1. Suppose a ,b ,c are the roots of the cubic x^3-x^2-2=0. Then the value...

    Text Solution

    |

  2. Polynomial P(x) is divided by (x-3) , the remainder if 6.If P(x) is di...

    Text Solution

    |

  3. If alphaandbeta are the roots of the equation x^(2)-6x+12=0 and the va...

    Text Solution

    |

  4. Let aa n db be the roots of the equation x^2-10 c x-11 d=0 and those o...

    Text Solution

    |

  5. Let a,binRandabne1."If "6a^(2)+20a+15=0and15b^(2)+20b+6=0 then the va...

    Text Solution

    |

  6. If there exists at least one real x which satisfies both the equatios ...

    Text Solution

    |

  7. If the equation x 62+2(lambda+1)x+lambda^2+lambda+7=0 has only negativ...

    Text Solution

    |

  8. All the values of k for which the quadratic polynomial f(x)=2x^2+k x+k...

    Text Solution

    |

  9. If set of values a for which f(x)=a x^2-(3+2a)x+6a!=0 is positive for ...

    Text Solution

    |

  10. a ,b ,a n dc are all different and non-zero real numbers on arithmetic...

    Text Solution

    |

  11. Let P(x)=5/4+6x-9x^2a n dQ(y)=-4y^2+4y+(13)/2dot if there exists uniqu...

    Text Solution

    |

  12. If equation x^4-(3m+2)x^2+m^2=0(m >0) has four real solutions which ar...

    Text Solution

    |

  13. If the equation 2x^2+4x y+7y^2-12 x-2y+t=0, where t is a parameter has...

    Text Solution

    |

  14. Let P(x0=x^3-8x^2+c x-d be a polynomial with real coefficients and wit...

    Text Solution

    |

  15. Let P(x)=x^4+a x^3+b x^2+c x+d be a polynomial such that P(1)=1,P(2)=8...

    Text Solution

    |

  16. Suppose a ,b ,c in I such that the greatest common divisor for x^2+a ...

    Text Solution

    |

  17. Integral part of the product of non-real roots of equation x^(4)-4x^(3...

    Text Solution

    |

  18. If alpha,beta and gamma are roots of equation x^(3)-3x^(2)+1=0, then t...

    Text Solution

    |

  19. If the roots of the cubic, x^3+a x^2+b x+c=0 are three consecutive pos...

    Text Solution

    |

  20. The function kf(x)=a x^3+b x^2+c x+d has three positive roots. If the ...

    Text Solution

    |