Home
Class 12
MATHS
Let x^2+y^2+x y+1geqa(x+y)AAx ,y in R ,...

Let `x^2+y^2+x y+1geqa(x+y)AAx ,y in R ,` then the number of possible integer (s) in the range of `a` is___________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( x^2 + y^2 + xy + 1 \geq a(x + y) \) where \( x, y \in \mathbb{R} \), we can follow these steps: ### Step 1: Rearranging the Inequality We start with the given inequality: \[ x^2 + y^2 + xy + 1 \geq a(x + y) \] Rearranging this gives: \[ x^2 + y^2 + xy + 1 - ax - ay \geq 0 \] This can be rewritten as: \[ x^2 + y^2 + xy - ax - ay + 1 \geq 0 \] ### Step 2: Grouping Terms We can group the terms involving \( x \) and \( y \): \[ x^2 + (y - a)x + y^2 - ay + 1 \geq 0 \] This is a quadratic in \( x \): \[ x^2 + (y - a)x + (y^2 - ay + 1) \geq 0 \] ### Step 3: Discriminant Condition For the quadratic in \( x \) to be non-negative for all \( x \), the discriminant must be less than or equal to zero: \[ D = (y - a)^2 - 4(y^2 - ay + 1) \leq 0 \] Expanding this: \[ D = (y - a)^2 - 4y^2 + 4ay - 4 \] Simplifying gives: \[ D = y^2 - 2ay + a^2 - 4y^2 + 4ay - 4 \leq 0 \] \[ D = -3y^2 + 2ay + (a^2 - 4) \leq 0 \] ### Step 4: Another Quadratic in \( y \) We can rearrange this into a standard quadratic form: \[ 3y^2 - 2ay - (a^2 - 4) \geq 0 \] For this quadratic to be non-negative for all \( y \), its discriminant must also be less than or equal to zero: \[ D' = (-2a)^2 - 4 \cdot 3 \cdot (-(a^2 - 4)) \leq 0 \] Calculating the discriminant: \[ D' = 4a^2 + 12(a^2 - 4) \leq 0 \] \[ D' = 4a^2 + 12a^2 - 48 \leq 0 \] \[ 16a^2 - 48 \leq 0 \] \[ 16a^2 \leq 48 \] \[ a^2 \leq 3 \] ### Step 5: Finding the Range of \( a \) Taking the square root gives: \[ -\sqrt{3} \leq a \leq \sqrt{3} \] ### Step 6: Identifying Possible Integer Values The integers in the range \( [-\sqrt{3}, \sqrt{3}] \) are: - \( -1 \) - \( 0 \) - \( 1 \) Thus, the number of possible integers in the range of \( a \) is: \[ \text{Number of integers} = 3 \] ### Final Answer The number of possible integers in the range of \( a \) is **3**. ---

To solve the inequality \( x^2 + y^2 + xy + 1 \geq a(x + y) \) where \( x, y \in \mathbb{R} \), we can follow these steps: ### Step 1: Rearranging the Inequality We start with the given inequality: \[ x^2 + y^2 + xy + 1 \geq a(x + y) \] Rearranging this gives: ...
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise Archives JEE MAIN (single correct Answer Type )|7 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise JEE ADVANCED (Single Correct Type )|5 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|6 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

If R = {(x,y):x, y in N, x+2y=8} then range of R is

If R={(x , y): x , y in W ,2x+y=8} ., then write the domain and range of Rdot

if (y^(2)-y+1)[x-2]lty^(2)+y+1,AAyepsilonR then ([.] denotes G.I.F) number of positive integer value of x is

Let f(x+y)+f(x-y)=2f(x)f(y) AA x,y in R and f(0)=k , then

If R={(x,y): x,y in W, x ^(2)+y^(2)=25} , then find the domain and range of R.

Q) The number ofpositive integer pairs (x, y) such that 1/x+1/y=1/2007 , x < y is

Let y be an element of the set A={1,2,3,4,5,6,10,15,30} and x_(1) , x_(2) , x_(3) be integers such that x_(1)x_(2)x_(3)=y , then the number of positive integral solutions of x_(1)x_(2)x_(3)=y is

If R={(x,y): x,y in W, x ^(2)+y^(2)=25} , then find the domain and range or R.

If R = {(x,y): x, y in W, x^(2) + y^(2) = 25} , then find the domain and range of R .

Suppose xy-5x+2y=30, where x and y are positive integers. Find the number of possible values of x.

CENGAGE ENGLISH-THEORY OF EQUATIONS-NUMERICAL VALUE TYPE
  1. Let P(x)=5/4+6x-9x^2a n dQ(y)=-4y^2+4y+(13)/2dot if there exists uniqu...

    Text Solution

    |

  2. If equation x^4-(3m+2)x^2+m^2=0(m >0) has four real solutions which ar...

    Text Solution

    |

  3. If the equation 2x^2+4x y+7y^2-12 x-2y+t=0, where t is a parameter has...

    Text Solution

    |

  4. Let P(x0=x^3-8x^2+c x-d be a polynomial with real coefficients and wit...

    Text Solution

    |

  5. Let P(x)=x^4+a x^3+b x^2+c x+d be a polynomial such that P(1)=1,P(2)=8...

    Text Solution

    |

  6. Suppose a ,b ,c in I such that the greatest common divisor for x^2+a ...

    Text Solution

    |

  7. Integral part of the product of non-real roots of equation x^(4)-4x^(3...

    Text Solution

    |

  8. If alpha,beta and gamma are roots of equation x^(3)-3x^(2)+1=0, then t...

    Text Solution

    |

  9. If the roots of the cubic, x^3+a x^2+b x+c=0 are three consecutive pos...

    Text Solution

    |

  10. The function kf(x)=a x^3+b x^2+c x+d has three positive roots. If the ...

    Text Solution

    |

  11. If b^(2)-4acle0 ("where" ane0 and a,b,c,x,y in R) satisfies the system...

    Text Solution

    |

  12. If (a^(2)-14a+13)x^(2)+(a+2)x-2=0 does not have two distinct real root...

    Text Solution

    |

  13. Let px^(2)+qx+r=0 be a quadratic equation (p,q,r in R) such that its r...

    Text Solution

    |

  14. Let x^2+y^2+x y+1geqa(x+y)AAx ,y in R , then the number of possible i...

    Text Solution

    |

  15. function f , R ->R , f(x) = (3x^2+mx+n)/(x^2+1) , if the range of func...

    Text Solution

    |

  16. If a ,b ,c are non-zero real numbers, then find the minimum value of t...

    Text Solution

    |

  17. If a ,b , in R such that a+b=1a n d(1-2a b0(a 63+b^3)=12 . The value ...

    Text Solution

    |

  18. If the cubic 2x^3-9x^2+12 x+k=0 has two equal roots then minimum value...

    Text Solution

    |

  19. Let a ,b ,a n dc be distinct nonzero real numbers such that (1-a^3)/a=...

    Text Solution

    |

  20. Evaluate : (i) i^(135) (ii) i^(-47) (iii) (-sqrt(-1))^(4n +3)...

    Text Solution

    |