Home
Class 12
MATHS
If a ,b , in R such that a+b=1a n d(1-2...

If `a ,b , in R` such that `a+b=1a n d(1-2a b0(a 63+b^3)=12` . The value of `(a^2+b^2)` is equal to____.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning provided in the video transcript. ### Step 1: Set up the equations We are given two equations: 1. \( a + b = 1 \) 2. \( (1 - 2ab)(a^3 + b^3) = 12 \) ### Step 2: Express \( a^2 + b^2 \) in terms of \( a + b \) and \( ab \) We know that: \[ a^2 + b^2 = (a + b)^2 - 2ab \] Substituting \( a + b = 1 \): \[ a^2 + b^2 = 1^2 - 2ab = 1 - 2ab \] Let \( x = a^2 + b^2 \). Thus, we have: \[ x = 1 - 2ab \quad \text{(1)} \] ### Step 3: Find \( a^3 + b^3 \) using the identity Using the identity for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] We can rewrite \( a^2 - ab + b^2 \) as: \[ a^2 + b^2 - ab = x - ab \] Thus: \[ a^3 + b^3 = (a + b)(a^2 + b^2 - ab) = 1(x - ab) = x - ab \quad \text{(2)} \] ### Step 4: Substitute into the second equation Now, substitute \( a^3 + b^3 \) from equation (2) into the second equation: \[ (1 - 2ab)(x - ab) = 12 \] Expanding this gives: \[ x - ab - 2abx + 2(ab)^2 = 12 \] Rearranging: \[ x - ab - 2abx + 2(ab)^2 - 12 = 0 \quad \text{(3)} \] ### Step 5: Substitute \( ab \) from equation (1) From equation (1), we have \( ab = \frac{1 - x}{2} \). Substitute this into equation (3): \[ x - \frac{1 - x}{2} - 2\left(\frac{1 - x}{2}\right)x + 2\left(\frac{1 - x}{2}\right)^2 - 12 = 0 \] Simplifying this will lead to a quadratic equation in \( x \). ### Step 6: Solve the quadratic equation After simplifying, we get: \[ x^2 - x - 24 = 0 \] Factoring gives: \[ (x - 3)(3x + 8) = 0 \] Thus, the solutions are: 1. \( x - 3 = 0 \) → \( x = 3 \) 2. \( 3x + 8 = 0 \) → \( x = -\frac{8}{3} \) (not valid since \( a^2 + b^2 \) must be non-negative) ### Conclusion The only valid solution is: \[ a^2 + b^2 = x = 3 \] ### Final Answer The value of \( a^2 + b^2 \) is **3**.

To solve the problem step by step, we will follow the reasoning provided in the video transcript. ### Step 1: Set up the equations We are given two equations: 1. \( a + b = 1 \) 2. \( (1 - 2ab)(a^3 + b^3) = 12 \) ### Step 2: Express \( a^2 + b^2 \) in terms of \( a + b \) and \( ab \) ...
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise Archives JEE MAIN (single correct Answer Type )|7 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise JEE ADVANCED (Single Correct Type )|5 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|6 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

If a ,b , in R such that a+b=1a n d(1-2ab)(a^3+b^3)=12 . The value of (a^2+b^2) is equal to____.

If a+b=7\ \ a n d\ \ a b=12 , find the value of a^2+b^2

The value of (b-c)/r_1+ (c-a)/r_2+ (a-b)/r_3 is equal to

If A and B are square matrices of order 3 such that "AA"^(T)=3B and 2AB^(-1)=3A^(-1)B , then the value of (|B|^(2))/(16) is equal to

If a+b=10\ \ a n d\ \ \ a b=16 , find the value of a^2-a b+b^2\ a n d\ \ a^2+a b+b^2

lim_(x to 0) (1+ax)^(b/x) =e^(2) , " where" a, b in N such that a+ b = 3 , then the value of (a,b) is

If a\ a n d\ b are roots of the equation x^2-x+1=0 then write the value of a^2+b^2dot

If A and B are two matrices such that A B=A and B A=B , then B^2 is equal to (a) B (b) A (c) 1 (d) 0

In a A B C if b=2,c=sqrt(3) and /_A=pi/6 , then value of R is equal to 1/2 b. 1 c. 2 d. 1/4

Consider the determinant Delta = |[a_1+b_1x^2,a_1x^2+b_1,c_1],[a_2+b_2x^2,a_2x^2+b_2,c_2],[a_3+b_3x^2,a_3x^2+b_3,c_3]| = 0 , \ w h e r e \ a_i ,b_i , c_i in R \ (i = 1,2,3) \ a n d \ x in R . Statement 1: The value of x satisfying Delta=0 are x=1,-1. Statement 2: If |[a_1,b_1,c_1],[a_2,b_2,c_2],[a_3,b_3,c_3]|=0,t h e n \ Delta=0.

CENGAGE ENGLISH-THEORY OF EQUATIONS-NUMERICAL VALUE TYPE
  1. Let P(x)=5/4+6x-9x^2a n dQ(y)=-4y^2+4y+(13)/2dot if there exists uniqu...

    Text Solution

    |

  2. If equation x^4-(3m+2)x^2+m^2=0(m >0) has four real solutions which ar...

    Text Solution

    |

  3. If the equation 2x^2+4x y+7y^2-12 x-2y+t=0, where t is a parameter has...

    Text Solution

    |

  4. Let P(x0=x^3-8x^2+c x-d be a polynomial with real coefficients and wit...

    Text Solution

    |

  5. Let P(x)=x^4+a x^3+b x^2+c x+d be a polynomial such that P(1)=1,P(2)=8...

    Text Solution

    |

  6. Suppose a ,b ,c in I such that the greatest common divisor for x^2+a ...

    Text Solution

    |

  7. Integral part of the product of non-real roots of equation x^(4)-4x^(3...

    Text Solution

    |

  8. If alpha,beta and gamma are roots of equation x^(3)-3x^(2)+1=0, then t...

    Text Solution

    |

  9. If the roots of the cubic, x^3+a x^2+b x+c=0 are three consecutive pos...

    Text Solution

    |

  10. The function kf(x)=a x^3+b x^2+c x+d has three positive roots. If the ...

    Text Solution

    |

  11. If b^(2)-4acle0 ("where" ane0 and a,b,c,x,y in R) satisfies the system...

    Text Solution

    |

  12. If (a^(2)-14a+13)x^(2)+(a+2)x-2=0 does not have two distinct real root...

    Text Solution

    |

  13. Let px^(2)+qx+r=0 be a quadratic equation (p,q,r in R) such that its r...

    Text Solution

    |

  14. Let x^2+y^2+x y+1geqa(x+y)AAx ,y in R , then the number of possible i...

    Text Solution

    |

  15. function f , R ->R , f(x) = (3x^2+mx+n)/(x^2+1) , if the range of func...

    Text Solution

    |

  16. If a ,b ,c are non-zero real numbers, then find the minimum value of t...

    Text Solution

    |

  17. If a ,b , in R such that a+b=1a n d(1-2a b0(a 63+b^3)=12 . The value ...

    Text Solution

    |

  18. If the cubic 2x^3-9x^2+12 x+k=0 has two equal roots then minimum value...

    Text Solution

    |

  19. Let a ,b ,a n dc be distinct nonzero real numbers such that (1-a^3)/a=...

    Text Solution

    |

  20. Evaluate : (i) i^(135) (ii) i^(-47) (iii) (-sqrt(-1))^(4n +3)...

    Text Solution

    |