Home
Class 12
MATHS
If sqrt(3)+i=(a+i b)(c+i d) , then find ...

If `sqrt(3)+i=(a+i b)(c+i d)` , then find the value of `tan^(-1)(b//a)tan^(-1)(d//c)dot`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \sqrt{3} + i = (a + ib)(c + id) \] ### Step 1: Expand the Right Side We expand the right side using the distributive property: \[ (a + ib)(c + id) = ac + iad + ibc + i^2bd \] Since \(i^2 = -1\), we can rewrite this as: \[ ac + i(ad + bc - bd) \] ### Step 2: Separate Real and Imaginary Parts Now we can separate the real and imaginary parts: \[ \text{Real part: } ac - bd \] \[ \text{Imaginary part: } ad + bc \] ### Step 3: Set Up Equations Now we can set up equations by comparing the real and imaginary parts with \(\sqrt{3} + i\): 1. \(ac - bd = \sqrt{3}\) 2. \(ad + bc = 1\) ### Step 4: Solve for \(b/a\) and \(d/c\) We need to find \( \tan^{-1}\left(\frac{b}{a}\right) + \tan^{-1}\left(\frac{d}{c}\right) \). We can use the formula for the sum of arctangents: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x + y}{1 - xy}\right) \] Let \(x = \frac{b}{a}\) and \(y = \frac{d}{c}\). Therefore, we have: \[ \tan^{-1}\left(\frac{b}{a}\right) + \tan^{-1}\left(\frac{d}{c}\right) = \tan^{-1}\left(\frac{\frac{b}{a} + \frac{d}{c}}{1 - \frac{b}{a} \cdot \frac{d}{c}}\right) \] ### Step 5: Substitute Values Substituting \(x\) and \(y\) into the formula gives: \[ \tan^{-1}\left(\frac{\frac{bc + ad}{ac}}{1 - \frac{bd}{ac}}\right) \] ### Step 6: Simplify Now we substitute the values from our earlier equations: - \(bc + ad = 1\) - \(ac - bd = \sqrt{3}\) Thus, we can write: \[ \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) \] ### Step 7: Find the Angle We know that: \[ \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \] Thus: \[ \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \] ### Final Answer Therefore, the final answer is: \[ \tan^{-1}\left(\frac{b}{a}\right) + \tan^{-1}\left(\frac{d}{c}\right) = \frac{\pi}{6} + n\pi \quad (n \in \mathbb{Z}) \] ---

To solve the problem, we start with the equation given: \[ \sqrt{3} + i = (a + ib)(c + id) \] ### Step 1: Expand the Right Side We expand the right side using the distributive property: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.7|6 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.8|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.5|12 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If (sqrt(8)+i)^(50)=3^(49)(a+i b) , then find the value of a^2+b^2dot

If x+i y=sqrt((a+i b)/(c+i d)), then write the value of (x^2+y^2)^2 .

If tan(A+B)=sqrt(3)andsin(A-B)=(1)/(2) ,then find the value of tan (2A-3B) .

If a ,\ b ,\ c >0 such that a+b+c=a b c , find the value of tan^(-1)a+tan^(-1)b+tan^(-1)c .

In a DeltaABC , if b=sqrt(3)+1, c=sqrt(3)-1 and A=60^(@) , then the value of tan.(B-C)/(2) is

Let a , b , c , d be positive integers such that (log)_a b=3/2a n d(log)_c d=5/4dot If (a-c)=9, then find the value of (b-d)dot

In a Delta ABC b= sqrt(3)+1, c=sqrt(3)-1 , angle A = 60 ^@ then the value of tan (B-C)/(2) is :-

In a triangle A B C , , if C is a right angle, then tan^(-1)(a/(b+c))+tan^(-1)(b/(c+a))= (a) pi/3 (b) pi/4 (c) (5pi)/2 (d) pi/6

sum_(i=1)^(2n) sin^(-1)(x_i)=npi then the value of sum_(i=1)^n cos^(-1)x_i+sum_(i=1)^n tan^(-1)x_i= (A) (npi)/4 (B) (2/3)npi (C) (5/4)npi (D) 2npi

if tan (A + B) = sqrt(3) and tan (A - B) = 1/ sqrt(3) , 0 (lt) A + B (le) 90^@, A (gt) B , then find the values of A and B.