Home
Class 12
MATHS
If z1,z2 and z3,z4 are two pairs of conj...

If `z_1,z_2` and `z_3,z_4` are two pairs of conjugate complex numbers then `arg(z_1/z_4)+arg(z_2/z_3)=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \arg\left(\frac{z_1}{z_4}\right) + \arg\left(\frac{z_2}{z_3}\right) \) given that \( z_1, z_2 \) and \( z_3, z_4 \) are pairs of conjugate complex numbers. ### Step-by-step Solution: 1. **Understanding the Conjugate Pairs**: - Since \( z_1 \) and \( z_2 \) are conjugates, we can write \( z_2 = \overline{z_1} \). - Similarly, since \( z_3 \) and \( z_4 \) are conjugates, we can write \( z_4 = \overline{z_3} \). 2. **Expressing the Arguments**: - We need to evaluate \( \arg\left(\frac{z_1}{z_4}\right) + \arg\left(\frac{z_2}{z_3}\right) \). - Using the property of arguments, we have: \[ \arg\left(\frac{z_1}{z_4}\right) = \arg(z_1) - \arg(z_4) \] \[ \arg\left(\frac{z_2}{z_3}\right) = \arg(z_2) - \arg(z_3) \] 3. **Substituting the Conjugates**: - Substitute \( z_2 = \overline{z_1} \) and \( z_4 = \overline{z_3} \): \[ \arg(z_2) = \arg(\overline{z_1}) = -\arg(z_1) \] \[ \arg(z_4) = \arg(\overline{z_3}) = -\arg(z_3) \] 4. **Combining the Arguments**: - Now substituting back into our expression: \[ \arg\left(\frac{z_1}{z_4}\right) + \arg\left(\frac{z_2}{z_3}\right) = \left(\arg(z_1) - \arg(z_4)\right) + \left(-\arg(z_1) - \arg(z_3)\right) \] - This simplifies to: \[ \arg(z_1) - (-\arg(z_3)) - \arg(z_1) - \arg(z_3) = 0 \] 5. **Final Result**: - Therefore, the final result is: \[ \arg\left(\frac{z_1}{z_4}\right) + \arg\left(\frac{z_2}{z_3}\right) = 0 \] ### Conclusion: Thus, the answer is: \[ \arg\left(\frac{z_1}{z_4}\right) + \arg\left(\frac{z_2}{z_3}\right) = 0 \]

To solve the problem, we need to find the value of \( \arg\left(\frac{z_1}{z_4}\right) + \arg\left(\frac{z_2}{z_3}\right) \) given that \( z_1, z_2 \) and \( z_3, z_4 \) are pairs of conjugate complex numbers. ### Step-by-step Solution: 1. **Understanding the Conjugate Pairs**: - Since \( z_1 \) and \( z_2 \) are conjugates, we can write \( z_2 = \overline{z_1} \). - Similarly, since \( z_3 \) and \( z_4 \) are conjugates, we can write \( z_4 = \overline{z_3} \). ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.7|6 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.8|11 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.5|12 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If z_(1),z_(2),z_(3),z_(4) are two pairs of conjugate complex numbers, then arg(z_(1)/z_(3)) + arg(z_(2)/z_(4)) is

If z_1, z_2a n dz_3, z_4 are two pairs of conjugate complex numbers, find the a rg((z1)/(z4))+a rg((z2)/(z3)) =0

If z_1, z_2a n dz_3, z_4 are two pairs of conjugate complex numbers, then find the value of "a r g"(z_1//z_4)+a r g(z_2//z_3)dot

Find the locus of a complex number z such that arg ((z-2)/(z+2))= (pi)/(3)

If z_1a n dz_2 are two complex numbers such that |z_1|=|z_2|a n d arg(z_1)+a r g(z_2)=pi , then show that z_1,=-( z )_2dot

Let z_(1),z_(2) and z_(3) be three non-zero complex numbers and z_(1) ne z_(2) . If |{:(abs(z_(1)),abs(z_(2)),abs(z_(3))),(abs(z_(2)),abs(z_(3)),abs(z_(1))),(abs(z_(3)),abs(z_(1)),abs(z_(2))):}|=0 , prove that (i) z_(1),z_(2),z_(3) lie on a circle with the centre at origin. (ii) arg(z_(3)/z_(2))=arg((z_(3)-z_(1))/(z_(2)-z_(1)))^(2) .

If z ne 0 be a complex number and "arg"(z)=pi//4 , then

If z_1a n dz_2 are two complex numbers such that |z_1|=|z_2|a n d arg(z_1)+a r g(z_2)=pi , then show that z_1,=- bar z _2dot

If z_(1) and z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1 , then

Let z_(1),z_(2),z_(3),z_(4) are distinct complex numbers satisfying |z|=1 and 4z_(3) = 3(z_(1) + z_(2)) , then |z_(1) - z_(2)| is equal to