Home
Class 12
MATHS
If the equation z^4+a1z^3+a2z^2+a3z+a4=0...

If the equation `z^4+a_1z^3+a_2z^2+a_3z+a_4=0` where `a_1,a_2,a_3,a_4` are real coefficients different from zero has a pure imaginary root then the expression `(a_3)/(a_1a_2)+(a_1a_4)/(a_2a_3)` has the value equal to

A

0

B

1

C

-2

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the polynomial equation given and find the value of the expression \(\frac{a_3}{a_1 a_2} + \frac{a_1 a_4}{a_2 a_3}\). ### Step-by-step Solution: 1. **Let \( z \) be a pure imaginary number**: We can express \( z \) as \( z = ik \), where \( k \) is a real number. 2. **Substitute \( z \) into the polynomial**: Substitute \( z = ik \) into the equation: \[ (ik)^4 + a_1(ik)^3 + a_2(ik)^2 + a_3(ik) + a_4 = 0 \] 3. **Calculate each term**: - \( (ik)^4 = i^4 k^4 = 1 \cdot k^4 = k^4 \) - \( a_1(ik)^3 = a_1 i^3 k^3 = a_1(-i)k^3 = -a_1 i k^3 \) - \( a_2(ik)^2 = a_2 i^2 k^2 = a_2(-1)k^2 = -a_2 k^2 \) - \( a_3(ik) = a_3 i k \) - \( a_4 = a_4 \) Putting these together, we have: \[ k^4 - a_2 k^2 + a_4 - a_1 i k^3 + a_3 i k = 0 \] 4. **Separate real and imaginary parts**: The equation can be separated into real and imaginary parts: - Real part: \( k^4 - a_2 k^2 + a_4 = 0 \) - Imaginary part: \( -a_1 k^3 + a_3 k = 0 \) 5. **Solve the imaginary part**: From the imaginary part, we can factor out \( k \): \[ k(-a_1 k^2 + a_3) = 0 \] This gives us two cases: - \( k = 0 \) (which is not a pure imaginary root) - \( -a_1 k^2 + a_3 = 0 \) Thus, we have: \[ a_3 = a_1 k^2 \] 6. **Substitute \( k^2 \) into the real part**: Substitute \( k^2 = \frac{a_3}{a_1} \) into the real part: \[ k^4 - a_2 k^2 + a_4 = 0 \] Since \( k^4 = (k^2)^2 = \left(\frac{a_3}{a_1}\right)^2 \): \[ \left(\frac{a_3}{a_1}\right)^2 - a_2 \left(\frac{a_3}{a_1}\right) + a_4 = 0 \] 7. **Multiply through by \( a_1^2 \)**: \[ a_3^2 - a_2 a_1 a_3 + a_4 a_1^2 = 0 \] 8. **Use the quadratic formula**: This is a quadratic equation in \( a_3 \): \[ a_3 = \frac{a_2 a_1 \pm \sqrt{(a_2 a_1)^2 - 4a_4 a_1^2}}{2} \] 9. **Now compute the required expression**: We need to find: \[ \frac{a_3}{a_1 a_2} + \frac{a_1 a_4}{a_2 a_3} \] Substituting \( a_3 = a_1 k^2 \) into the expression gives: \[ \frac{a_1 k^2}{a_1 a_2} + \frac{a_1 a_4}{a_2 a_1 k^2} = \frac{k^2}{a_2} + \frac{a_4}{a_2 k^2} \] 10. **Set \( k^2 = \frac{a_3}{a_1} \)**: Substitute \( k^2 \) back into the expression: \[ \frac{\frac{a_3}{a_1}}{a_2} + \frac{a_4}{a_2 \cdot \frac{a_3}{a_1}} = \frac{a_3}{a_1 a_2} + \frac{a_1 a_4}{a_2 a_3} \] 11. **Final result**: From the analysis, we find that the expression simplifies to 1. ### Conclusion: Thus, the value of the expression \(\frac{a_3}{a_1 a_2} + \frac{a_1 a_4}{a_2 a_3}\) is equal to **1**.

To solve the problem, we need to analyze the polynomial equation given and find the value of the expression \(\frac{a_3}{a_1 a_2} + \frac{a_1 a_4}{a_2 a_3}\). ### Step-by-step Solution: 1. **Let \( z \) be a pure imaginary number**: We can express \( z \) as \( z = ik \), where \( k \) is a real number. 2. **Substitute \( z \) into the polynomial**: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWERS TYPE|49 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|36 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.11|6 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If a_1,a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of (1+x)^n , then prove that: (a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot

If a_1,a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of (1+x)^n , then prove that: (a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot

Let A be the set of 4-digit numbers a_1 a_2 a_3 a_4 where a_1 > a_2 > a_3 > a_4 , then n(A) is equal to

Let A be the set of 4-digit numbers a_1 a_2 a_3 a_4 where a_1 > a_2 > a_3 > a_4 , then n(A) is equal to

If a_1,a_2 ...a_n are nth roots of unity then 1/(1-a_1) +1/(1-a_2)+1/(1-a_3)..+1/(1-a_n) is equal to

If 2z_1//3z_2 is a purely imaginary number, then find the value of "|"(z_1-z_2")"//(z_1+z_2)|dot

If 2z_1//3z_2 is a purely imaginary number, then find the value of "|"(z_1-z_2")"//(z_1+z_2)|dot

If a_1,a_2,a_3,....a_n are positive real numbers whose product is a fixed number c, then the minimum value of a_1+a_2+....+a_(n-1)+3a_n is

If a_1,a_2,a_3,....a_n are positive real numbers whose product is a fixed number c, then the minimum value of a_1+a_2+.......a_(n-1)+2a_n is

If a_n>1 for all n in N then log_(a_2) a_1+log_(a_3) a_2+.....log_(a_1)a_n has the minimum value of

CENGAGE ENGLISH-COMPLEX NUMBERS-single correct Answer type
  1. about to only mathematics

    Text Solution

    |

  2. The complex number sin(x)+icos(2x) and cos(x)-isin(2x) are conjugate t...

    Text Solution

    |

  3. If the equation z^4+a1z^3+a2z^2+a3z+a4=0 where a1,a2,a3,a4 are real co...

    Text Solution

    |

  4. If z1, z2 in C , z1^2 in R , z1(z1^2-3z2^2)=2 and z2(3z1^2-z2^2)=11,...

    Text Solution

    |

  5. If a^2+b^2=1t h e n(1+b+i a)/(1+b-i a)= 1 b. 2 c. b+i a d. a+i b

    Text Solution

    |

  6. If z(1+a)=b+i ca n da^2+b^2+c^2=1, then [(1+i z)//(1-i z)= (a+i b)/(1...

    Text Solution

    |

  7. If a and b are complex and one of the roots of the equation x^(2) +...

    Text Solution

    |

  8. If z =(lambda+3)+isqrt((5-lambda^2)) ; then the locus of z is a) a s...

    Text Solution

    |

  9. Let z=1-t+isqrt(t^2+t+2), where t is a real parameter.the locus of the...

    Text Solution

    |

  10. If z(1) and z(2) are the complex roots of the equation (x-3)^(3) + 1=...

    Text Solution

    |

  11. Which of the following is equal to root(3)(-1)?

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. Sum of common roots of the equations z^(3) + 2z^(2) + 2z + 1 =0 and z...

    Text Solution

    |

  14. When the polynomial 5x^3+M x+N is divided by x^2+x+1, the remainder is...

    Text Solution

    |

  15. If z=x+iy and x^2+y^2=16 , then the range of ||x|-|y|| is [0,4] b. [0,...

    Text Solution

    |

  16. If z is a complex number satisfying the equaiton z^(6) - 6z^(3) + 25 ...

    Text Solution

    |

  17. If 8i z^3+12 z^2-18 z+27 i=0,t h e n |z|=3/2 b. |z|=2/3 c.|z|=1 d. |...

    Text Solution

    |

  18. Let z1a n dz2 be complex numbers such that z1!=z2 and |z1|=|z2|dot If ...

    Text Solution

    |

  19. If |z1|=|z2| and arg((z1)/(z2))=pi, then z1+z2 is equal to (a) 0 (b) ...

    Text Solution

    |

  20. If for complex numbers z1a n dz2,a r e(z1)-a r g(z2)=0 , then show tha...

    Text Solution

    |