Home
Class 12
MATHS
If z1, z2 in C , z1^2 in R , z1(z1^2-3...

If `z_1, z_2 in C , z_1^2 in R , z_1(z_1^2-3z_2^2)=2` and `z_2(3z_1^2-z_2^2)=11`, then the value of `z_1^2+z_2^2` is

A

10

B

12

C

5

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( z_1(z_1^2 - 3z_2^2) = 2 \) (Equation 1) 2. \( z_2(3z_1^2 - z_2^2) = 11 \) (Equation 2) ### Step 1: Rewrite the equations We can rewrite the equations as follows: From Equation 1: \[ z_1^3 - 3z_1z_2^2 = 2 \] From Equation 2: \[ 3z_1^2z_2 - z_2^3 = 11 \] ### Step 2: Introduce complex numbers Let \( z_1 = a + bi \) and \( z_2 = c + di \), where \( a, b, c, d \) are real numbers. Since \( z_1^2 \) is real, \( b = 0 \) (because the imaginary part must vanish). Therefore, \( z_1 = a \) (a real number). ### Step 3: Substitute \( z_1 \) into the equations Substituting \( z_1 = a \) into the equations gives: 1. \( a(a^2 - 3z_2^2) = 2 \) 2. \( z_2(3a^2 - z_2^2) = 11 \) Let \( z_2^2 = x \), then we can rewrite the equations as: 1. \( a(a^2 - 3x) = 2 \) (Equation 3) 2. \( z_2(3a^2 - x) = 11 \) (Equation 4) ### Step 4: Solve for \( z_2 \) From Equation 4, we can express \( z_2 \) in terms of \( x \): \[ z_2 = \frac{11}{3a^2 - x} \] ### Step 5: Substitute \( z_2 \) back into Equation 3 Substituting \( z_2 \) into Equation 3 gives: \[ a(a^2 - 3\left(\frac{11}{3a^2 - x}\right)^2) = 2 \] ### Step 6: Simplify and solve for \( a \) and \( x \) This equation can be complicated, so we can alternatively multiply the two original equations directly as follows: ### Step 7: Multiply the two equations Multiply Equation 1 by \( i \) and Equation 2 by \( -i \): \[ z_1(z_1^2 - 3z_2^2) + i z_2(3z_1^2 - z_2^2) = 2 + 11i \] \[ z_1(z_1^2 - 3z_2^2) - i z_2(3z_1^2 - z_2^2) = 2 - 11i \] ### Step 8: Form a cube This can be recognized as: \[ (z_1 + iz_2)^3 = 2 + 11i \] \[ (z_1 - iz_2)^3 = 2 - 11i \] ### Step 9: Multiply the two results Now, multiply these two equations: \[ (z_1^2 + z_2^2)^3 = (2 + 11i)(2 - 11i) = 4 + 121 = 125 \] ### Step 10: Take the cube root Taking the cube root gives: \[ z_1^2 + z_2^2 = 5 \] ### Conclusion Thus, the value of \( z_1^2 + z_2^2 \) is \( \boxed{5} \).

To solve the problem, we start with the given equations: 1. \( z_1(z_1^2 - 3z_2^2) = 2 \) (Equation 1) 2. \( z_2(3z_1^2 - z_2^2) = 11 \) (Equation 2) ### Step 1: Rewrite the equations We can rewrite the equations as follows: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWERS TYPE|49 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|36 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.11|6 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If z_1, z_2 in C ,z_1^2+z_2^2 in R ,z_1(z_1^2-3z_2^2)=2 and z_2(3z1^2-z2^2)=11 , then the value of z1 2+z2 2 is 10 b. 12 c. 5 d. 8

If z_(1),z_(2)inC,z_(1)^(2)+z_(2)^(2)inR,z_(1)(z_(1)^(2)-3z_(2)^(2))=2 and z_(2)(3z_(1)^(2)-z_(2)^(2))=11, the value of z_(1)^(2)+z_(2)^(2) is

If z_1=2-i ,z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|

If z_1=2-i ,\ z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|

If z_1=2-i ,z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|

If z_1=2-i ,\ z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)| .

If |z_1|=1,|z_2|=2,|z_3|=3,a n d|9z_1z_2+4z_1z_3+z_2z_3|=12 , then find the value of |z_1+z_2+z_3|dot

If |z_1|=1,|z_2|=2,|z_3|=3,a n d|9z_1z_2+4z_1z_3+z_2z_3|=12 , then find the value of |z_1+z_2+z_3|dot

If z_1ne-z_2 and |z_1+z_2|=|1/z_1 + 1/z_2| then :

If z_1, z_2 are two complex numbers (z_1!=z_2) satisfying |z_1^2-z_2^2|=| z_ 1^2+ z _2 ^2-2( z _1)( z _2)| , then a. (z_1)/(z_2) is purely imaginary b. (z_1)/(z_2) is purely real c. |a r g z_1-a rgz_2|=pi d. |a r g z_1-a rgz_2|=pi/2

CENGAGE ENGLISH-COMPLEX NUMBERS-single correct Answer type
  1. The complex number sin(x)+icos(2x) and cos(x)-isin(2x) are conjugate t...

    Text Solution

    |

  2. If the equation z^4+a1z^3+a2z^2+a3z+a4=0 where a1,a2,a3,a4 are real co...

    Text Solution

    |

  3. If z1, z2 in C , z1^2 in R , z1(z1^2-3z2^2)=2 and z2(3z1^2-z2^2)=11,...

    Text Solution

    |

  4. If a^2+b^2=1t h e n(1+b+i a)/(1+b-i a)= 1 b. 2 c. b+i a d. a+i b

    Text Solution

    |

  5. If z(1+a)=b+i ca n da^2+b^2+c^2=1, then [(1+i z)//(1-i z)= (a+i b)/(1...

    Text Solution

    |

  6. If a and b are complex and one of the roots of the equation x^(2) +...

    Text Solution

    |

  7. If z =(lambda+3)+isqrt((5-lambda^2)) ; then the locus of z is a) a s...

    Text Solution

    |

  8. Let z=1-t+isqrt(t^2+t+2), where t is a real parameter.the locus of the...

    Text Solution

    |

  9. If z(1) and z(2) are the complex roots of the equation (x-3)^(3) + 1=...

    Text Solution

    |

  10. Which of the following is equal to root(3)(-1)?

    Text Solution

    |

  11. about to only mathematics

    Text Solution

    |

  12. Sum of common roots of the equations z^(3) + 2z^(2) + 2z + 1 =0 and z...

    Text Solution

    |

  13. When the polynomial 5x^3+M x+N is divided by x^2+x+1, the remainder is...

    Text Solution

    |

  14. If z=x+iy and x^2+y^2=16 , then the range of ||x|-|y|| is [0,4] b. [0,...

    Text Solution

    |

  15. If z is a complex number satisfying the equaiton z^(6) - 6z^(3) + 25 ...

    Text Solution

    |

  16. If 8i z^3+12 z^2-18 z+27 i=0,t h e n |z|=3/2 b. |z|=2/3 c.|z|=1 d. |...

    Text Solution

    |

  17. Let z1a n dz2 be complex numbers such that z1!=z2 and |z1|=|z2|dot If ...

    Text Solution

    |

  18. If |z1|=|z2| and arg((z1)/(z2))=pi, then z1+z2 is equal to (a) 0 (b) ...

    Text Solution

    |

  19. If for complex numbers z1a n dz2,a r e(z1)-a r g(z2)=0 , then show tha...

    Text Solution

    |

  20. If |z1/z2|=1 and arg (z1z2)=0 , then a. z1 = z2 b. |z2|^2 = z1*z2 ...

    Text Solution

    |