Home
Class 12
MATHS
If z=x+iy and x^2+y^2=16 , then the rang...

If `z=x+iy and x^2+y^2=16 ,` then the range of `||x|-|y||` is `[0,4]` b. `[0,2]` c. `[2,4]` d. none of these

A

`[0,4]`

B

`[0,2]`

C

`[2,4]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of \( ||x| - |y|| \) given that \( z = x + iy \) and \( x^2 + y^2 = 16 \), we can follow these steps: ### Step 1: Understand the given equation The equation \( x^2 + y^2 = 16 \) represents a circle with a radius of 4 centered at the origin in the xy-plane. This means that the values of \( x \) and \( y \) can be expressed in terms of trigonometric functions. ### Step 2: Parametrize \( x \) and \( y \) We can express \( x \) and \( y \) in terms of a parameter \( \theta \): \[ x = 4 \cos \theta, \quad y = 4 \sin \theta \] ### Step 3: Calculate \( ||x| - |y|| \) Now we need to find \( ||x| - |y|| \): \[ ||x| - |y|| = ||4 \cos \theta| - |4 \sin \theta|| = 4 ||\cos \theta - \sin \theta|| \] ### Step 4: Simplify the expression We can simplify this to: \[ ||x| - |y|| = 4 |\cos \theta - \sin \theta| \] ### Step 5: Find the maximum and minimum values of \( |\cos \theta - \sin \theta| \) To find the range of \( |\cos \theta - \sin \theta| \), we can use the identity: \[ |\cos \theta - \sin \theta| = \sqrt{(\cos \theta - \sin \theta)^2} \] Expanding this gives: \[ (\cos \theta - \sin \theta)^2 = \cos^2 \theta + \sin^2 \theta - 2 \cos \theta \sin \theta = 1 - \sin 2\theta \] Thus: \[ |\cos \theta - \sin \theta| = \sqrt{1 - \sin 2\theta} \] ### Step 6: Determine the range of \( \sin 2\theta \) The function \( \sin 2\theta \) varies between -1 and 1. Therefore: - The maximum value of \( 1 - \sin 2\theta \) occurs when \( \sin 2\theta = -1 \): \[ 1 - (-1) = 2 \quad \Rightarrow \quad \sqrt{2} \] - The minimum value occurs when \( \sin 2\theta = 1 \): \[ 1 - 1 = 0 \quad \Rightarrow \quad \sqrt{0} = 0 \] ### Step 7: Calculate the range of \( ||x| - |y|| \) Thus, the range of \( |\cos \theta - \sin \theta| \) is from 0 to \( \sqrt{2} \). Therefore, the range of \( ||x| - |y|| \) becomes: \[ 4 \cdot [0, \sqrt{2}] = [0, 4\sqrt{2}] \] ### Step 8: Final result Since \( 4\sqrt{2} \) is approximately \( 5.66 \), we conclude that the range of \( ||x| - |y|| \) is: \[ [0, 4] \] ### Conclusion The correct answer is \( [0, 4] \).

To find the range of \( ||x| - |y|| \) given that \( z = x + iy \) and \( x^2 + y^2 = 16 \), we can follow these steps: ### Step 1: Understand the given equation The equation \( x^2 + y^2 = 16 \) represents a circle with a radius of 4 centered at the origin in the xy-plane. This means that the values of \( x \) and \( y \) can be expressed in terms of trigonometric functions. ### Step 2: Parametrize \( x \) and \( y \) We can express \( x \) and \( y \) in terms of a parameter \( \theta \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWERS TYPE|49 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|36 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.11|6 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If z=x+iy and x^(2)+y^(2)=16 , then the range of abs(abs(x)-abs(y)) is

If R={(x , y): x , y in Z , x^2+y^2lt=4} is a relation on Z, \ then domain of R is {0,1,2} b. {0,-1,-2} c. {-2,-1,0,1,2} d. none of these

If x ,y ,z are real and 4x^2+9y^2+16 z^2-6x y-12 y z-8z x=0,t h e nx , y,z are in a. A.P. b. G.P. c. H.P. d. none of these

If plane 2x+3y+6z+k=0 is tangent to the sphere x^(2)+y^(2)+z^(2)+2x-2y+2z-6=0 , then a value of k is (a) 26 (b) 16 (c) -26 (d) none of these

The equation of y-axis are (A) x=0,y=0 (B) x=0,z=0 (C) y=0,z=0 (D) none of these

Let |[x,2,x],[x^2,x,6],[x,x,6]|=a x^4+b x^3+c x^2+dx+edot Then, the value of 5a+4b+3c+2d+e is equal (a)0 (b) -16 (c) 16 (d) none of these

The equation of the circle passing through the point (1,1) and having two diameters along the pair of lines x^2-y^2-2x+4y-3=0 is a. x^2+y^2-2x-4y+4=0 b. x^2+y^2+2x+4y-4=0 c. x^2+y^2-2x+4y+4=0 d. none of these

The distance between the planes 2x+2y-z+ 2=0\ a n d\ 4x+4y-2z+5=0 is a. 1/2 b. 1/4' c. 1/6 d. none of these

Comprehension 1 Let x ,\ y ,\ z in R^+&\ D=|xx^3x^4-1y y^3y^4-1z z^3z^4-1| If x!=y!=z\ &\ x ,\ y ,\ z are in A.P. and D=o,\ t h e n\ 2x^2z+x^2z^2 is equal to a. 1 b. 2 c. 3\ d. none of these

The area of the region given by x^2+y^2-6y<=0&y<=x is (9pi-9)/4 b. (9pi-18)/4 c. (3pi+9)/4 d. none of these

CENGAGE ENGLISH-COMPLEX NUMBERS-single correct Answer type
  1. Sum of common roots of the equations z^(3) + 2z^(2) + 2z + 1 =0 and z...

    Text Solution

    |

  2. When the polynomial 5x^3+M x+N is divided by x^2+x+1, the remainder is...

    Text Solution

    |

  3. If z=x+iy and x^2+y^2=16 , then the range of ||x|-|y|| is [0,4] b. [0,...

    Text Solution

    |

  4. If z is a complex number satisfying the equaiton z^(6) - 6z^(3) + 25 ...

    Text Solution

    |

  5. If 8i z^3+12 z^2-18 z+27 i=0,t h e n |z|=3/2 b. |z|=2/3 c.|z|=1 d. |...

    Text Solution

    |

  6. Let z1a n dz2 be complex numbers such that z1!=z2 and |z1|=|z2|dot If ...

    Text Solution

    |

  7. If |z1|=|z2| and arg((z1)/(z2))=pi, then z1+z2 is equal to (a) 0 (b) ...

    Text Solution

    |

  8. If for complex numbers z1a n dz2,a r e(z1)-a r g(z2)=0 , then show tha...

    Text Solution

    |

  9. If |z1/z2|=1 and arg (z1z2)=0 , then a. z1 = z2 b. |z2|^2 = z1*z2 ...

    Text Solution

    |

  10. Suppose A is a complex number and n in N , such that A^n=(A+1)^n=1, t...

    Text Solution

    |

  11. about to only mathematics

    Text Solution

    |

  12. Let z,w be complex numbers such that barz+ibarw=0 and arg zw=pi Then a...

    Text Solution

    |

  13. If z=(3+7i)(a+ib), where a, b in Z-{0}, is purely imaginery, then mini...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. Given z=(1+isqrt(3))^(100), then [R E(z)//I M(z)] equals 2^(100) b. 2^...

    Text Solution

    |

  16. The expression [(1+sin(pi/8)+icos(pi/8))/(1+sin(pi/8)-icos(pi/8))]^8 i...

    Text Solution

    |

  17. The number of complex numbers z satisfying |z-3-i|=|z-9-i|a n d|z-3+3i...

    Text Solution

    |

  18. P(z) be a variable point in the Argand plane such that |z|=m in i mu m...

    Text Solution

    |

  19. If |z^2-1|=|z|^2+1, then z lies on (a) The Real axis (b)The imaginary...

    Text Solution

    |

  20. about to only mathematics

    Text Solution

    |