Home
Class 12
MATHS
If |z1|=|z2| and arg((z1)/(z2))=pi, then...

If `|z_1|=|z_2|` and `arg((z_1)/(z_2))=pi`, then `z_1+z_2` is equal to (a) 0 (b) purely imaginary (c) purely real (d) none of these

A

0

B

purely imaginary

C

purely real

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given conditions: 1. \( |z_1| = |z_2| \) 2. \( \arg\left(\frac{z_1}{z_2}\right) = \pi \) ### Step 1: Understand the implications of the given conditions Since \( |z_1| = |z_2| \), we can denote this common magnitude as \( R \). Therefore, we can write: \[ |z_1| = R \quad \text{and} \quad |z_2| = R \] ### Step 2: Analyze the argument condition The condition \( \arg\left(\frac{z_1}{z_2}\right) = \pi \) implies: \[ \arg(z_1) - \arg(z_2) = \pi \] Let \( \arg(z_1) = \theta_1 \) and \( \arg(z_2) = \theta_2 \). Then: \[ \theta_1 - \theta_2 = \pi \] This means: \[ \theta_1 = \theta_2 + \pi \] ### Step 3: Express \( z_1 \) and \( z_2 \) in exponential form Using Euler's formula, we can express \( z_1 \) and \( z_2 \) as: \[ z_1 = R e^{i\theta_1} = R e^{i(\theta_2 + \pi)} \] \[ z_2 = R e^{i\theta_2} \] ### Step 4: Substitute the expressions for \( z_1 \) and \( z_2 \) Substituting \( \theta_1 \) into the expression for \( z_1 \): \[ z_1 = R e^{i\theta_2} e^{i\pi} = R e^{i\theta_2} (-1) = -R e^{i\theta_2} \] Thus, we have: \[ z_1 = -z_2 \] ### Step 5: Find \( z_1 + z_2 \) Now, we can add \( z_1 \) and \( z_2 \): \[ z_1 + z_2 = -z_2 + z_2 = 0 \] ### Conclusion Thus, we conclude that: \[ z_1 + z_2 = 0 \] ### Final Answer The answer is (a) 0. ---

To solve the problem, we start with the given conditions: 1. \( |z_1| = |z_2| \) 2. \( \arg\left(\frac{z_1}{z_2}\right) = \pi \) ### Step 1: Understand the implications of the given conditions Since \( |z_1| = |z_2| \), we can denote this common magnitude as \( R \). Therefore, we can write: \[ |z_1| = R \quad \text{and} \quad |z_2| = R \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWERS TYPE|49 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise LINKED COMPREHENSION TYPE|36 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.11|6 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If |z_(1)|=|z_(2)| and arg (z_(1))+"arg"(z_(2))=0 , then

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find the of z_(1)z_(2).

If z_1, z_2 are two complex numbers (z_1!=z_2) satisfying |z_1^2-z_2^2|=| z_ 1^2+ z _2 ^2-2( z _1)( z _2)| , then a. (z_1)/(z_2) is purely imaginary b. (z_1)/(z_2) is purely real c. |a r g z_1-a rgz_2|=pi d. |a r g z_1-a rgz_2|=pi/2

If |z-1|-1,t h e n a r g((z-1-i)//z) can be equal to pi//4 (z-2)//z is purely imaginary number (z-2)//z is purely real number If a rg(z)=theta,w h e r ez!=0a n dtheta is acute, then 1-2//z=it a ntheta

If z is a purely imaginary number then arg (z) may be

If |z^2-1|=|z|^2+1 , then z lies on (a) The Real axis (b)The imaginary axis (c)A circle (d)An ellipse

Given that |z_1+z_2|^2=|z_1|^2+|z_2|^2 , prove that z_1/z_2 is purely imaginary.

Prove that |z_1+z_2|^2=|z_1|^2, ifz_1//z_2 is purely imaginary.

If |z_1/z_2|=1 and arg (z_1z_2)=0 , then a. z_1 = z_2 b. |z_2|^2 = z_1*z_2 c. z_1*z_2 = 1 d. none of these

If |z_1+z_2|=|z_1-z_2| and |z_1|=|z_2|, then (A) z_1=+-iz_2 (B) z_1=z_2 (C) z_=-z_2 (D) z_2=+-iz_1

CENGAGE ENGLISH-COMPLEX NUMBERS-single correct Answer type
  1. If 8i z^3+12 z^2-18 z+27 i=0,t h e n |z|=3/2 b. |z|=2/3 c.|z|=1 d. |...

    Text Solution

    |

  2. Let z1a n dz2 be complex numbers such that z1!=z2 and |z1|=|z2|dot If ...

    Text Solution

    |

  3. If |z1|=|z2| and arg((z1)/(z2))=pi, then z1+z2 is equal to (a) 0 (b) ...

    Text Solution

    |

  4. If for complex numbers z1a n dz2,a r e(z1)-a r g(z2)=0 , then show tha...

    Text Solution

    |

  5. If |z1/z2|=1 and arg (z1z2)=0 , then a. z1 = z2 b. |z2|^2 = z1*z2 ...

    Text Solution

    |

  6. Suppose A is a complex number and n in N , such that A^n=(A+1)^n=1, t...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. Let z,w be complex numbers such that barz+ibarw=0 and arg zw=pi Then a...

    Text Solution

    |

  9. If z=(3+7i)(a+ib), where a, b in Z-{0}, is purely imaginery, then mini...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. Given z=(1+isqrt(3))^(100), then [R E(z)//I M(z)] equals 2^(100) b. 2^...

    Text Solution

    |

  12. The expression [(1+sin(pi/8)+icos(pi/8))/(1+sin(pi/8)-icos(pi/8))]^8 i...

    Text Solution

    |

  13. The number of complex numbers z satisfying |z-3-i|=|z-9-i|a n d|z-3+3i...

    Text Solution

    |

  14. P(z) be a variable point in the Argand plane such that |z|=m in i mu m...

    Text Solution

    |

  15. If |z^2-1|=|z|^2+1, then z lies on (a) The Real axis (b)The imaginary...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. about to only mathematics

    Text Solution

    |

  18. Number of ordered pairs (s), (a,b) of real numbers such that (a+ib)^(2...

    Text Solution

    |

  19. The equation az^(3) + bz^(2) + barbz + bara = 0 has a root alpha, wh...

    Text Solution

    |

  20. If k>0, |z|=|w|=k, and alpha=(z-bar w)/(k^2+zbar(w)), then Re(alpha) ...

    Text Solution

    |